Indian Institute of Science, Bangalore ME 243: Midsemester Test

Date: 23/9/03. Duration: 3.30 p.m.–5.00 p.m. Maximum Marks: 100

- 1. Show that $\mathbf{Q} \in \text{Orth}^+ \cap \text{Sym} \{\mathbf{I}\}$ if and only if it is of the form $2\mathbf{e} \otimes \mathbf{e} \mathbf{I}$ where \mathbf{e} is a (25) unit vector.
- 2. A tensor \boldsymbol{P} is a projection if it satisfies the relation $\boldsymbol{P}^2 = \boldsymbol{P}$. (35)
 - (a) Show that if \boldsymbol{P} is a projection then $\boldsymbol{I} \boldsymbol{P}$ is also a projection.
 - (b) Find if $e_1 \otimes e_1$ and $e_1 \otimes (e_1 + e_2)$ are projections.
 - (c) To derive a characterization for projections (similar to the spectral resolution for symmetric tensors), recall that any tensor T can be expressed as (in 2D)

$$oldsymbol{T} = \lambda_1 oldsymbol{n}_1 \otimes oldsymbol{N}_1 + \lambda_2 oldsymbol{n}_2 \otimes oldsymbol{N}_2,$$

where λ_i^2 are the eigenvalues of $\mathbf{T}^t \mathbf{T}$, and \mathbf{n}_i and \mathbf{N}_i are orthonormal sets of vectors. Also recall that the λ_i s are nonnegative. Using these properties, find conditions on the λ_i and $(\mathbf{n}_i \cdot \mathbf{N}_j)$, i, j = 1, 2, in order for \mathbf{T} to be a projection. Substituting these conditions into the expression for \mathbf{T} , find the required characterization.

- (d) Based on the deduced characterization, is a projection always symmetric? If not, under what conditions is it symmetric?
- (e) Using your characterization, find an orthogonal Q that diagonalises $P \in \text{Sym}$, i.e., QPQ^t should be diagonal.

(25)

- 3. Find $\partial \phi / \partial T$, where $\phi = (\det T)T^{-1} : T^{-1}$.
- 4. Show that the infinitesimal strain $\boldsymbol{\epsilon} = 0.5 [\boldsymbol{\nabla}_{\boldsymbol{X}} \boldsymbol{u} + (\boldsymbol{\nabla}_{\boldsymbol{X}} \boldsymbol{u})^t]$ is zero at all $\boldsymbol{X} \in V_0$ if and (15) only if \boldsymbol{u} is of the form $\boldsymbol{u} = \boldsymbol{W} \boldsymbol{X} + \boldsymbol{c}$ where \boldsymbol{W} is a skew tensor. You may assume \boldsymbol{u} to be twice differentiable. (Note that if \boldsymbol{w} is the axial vector of \boldsymbol{W} , the above relation can also be written as $\boldsymbol{u} = \boldsymbol{w} \times \boldsymbol{X} + \boldsymbol{c}$.)