Indian Institute of Science, Bangalore ME 243: Midsemester Test

Date: 26/9/06. Duration: 3.30 p.m.–5.00 p.m. Maximum Marks: 100

1. In the class we saw that the space of vectors (3 independent components) is "equivalent" (20) to the space of skew-symmetric tensor (3 independent components), in the sense that for every $\boldsymbol{w} \in V$, there exists $\boldsymbol{W} \in Skw$ such that $\boldsymbol{W}\boldsymbol{u} = \boldsymbol{w} \times \boldsymbol{u}$ for all $\boldsymbol{u} \in V$, and conversely. This problem explores if a similar equivalence can be set up for symmetric tensors.

If $\mathbf{a}, \mathbf{b} \in V$, then obviously $(\mathbf{a} \otimes \mathbf{b} + \mathbf{b} \otimes \mathbf{a})/2 \in \text{Sym.}$ Conversely, determine if every $\mathbf{S} \in \text{Sym}$ (6 independent components) can be represented as $(\mathbf{a} \otimes \mathbf{b} + \mathbf{b} \otimes \mathbf{a})/2$ (3 independent components for \mathbf{a} and \mathbf{b} each, making a total of 6 independent components). (Hint: Find the principal invariants of $(\mathbf{a} \otimes \mathbf{b} + \mathbf{b} \otimes \mathbf{a})/2$).

- 2. Let $\mathbf{R} \in \text{Orth}^+$, and let \mathbf{e} be the axis of \mathbf{R} , i.e., $\mathbf{R}\mathbf{e} = \mathbf{e}$. Let $\{\mathbf{e}, \mathbf{q}, \mathbf{r}\}$ form an orthonormal (40) basis.
 - (a) Express the identity tensor I in terms of the orthonormal basis $\{e, q, r\}$. Substitute this expression in the relation R = RI and derive the following representation of R:

$$\mathbf{R} = \mathbf{e} \otimes \mathbf{e} + \cos \alpha (\mathbf{q} \otimes \mathbf{q} + \mathbf{r} \otimes \mathbf{r}) + \sin \alpha (\mathbf{r} \otimes \mathbf{q} - \mathbf{q} \otimes \mathbf{r}),$$

where $\cos \alpha = (\mathbf{R}\mathbf{q}) \cdot \mathbf{q}$. Justify all your answers *mathematically*.

- (b) Using the above representation, find conditions on α such that $\{I, R, R^2\}$ is a linearly independent set. Also find value/values of α for which the set $\{I, R\}$ (but not R^2) is linearly independent, and the value of α for which $\{I, R, R^2\}$ is equivalent to $\{I\}$.
- 3. Find the directional derivative of $\phi(\mathbf{T}) = \det \mathbf{T}(\mathbf{T}^{-1}) : (\mathbf{T}^{-1})$, and use it to find the gradient (25) $\partial \phi / \partial \mathbf{T}$.
- 4. Derive the spatial version of the Piola identity

$$\boldsymbol{
abla}_x \cdot (\operatorname{\mathbf{cof}} \boldsymbol{F}^{-1}) = \boldsymbol{0}.$$

Some relevant formulae

$$(\boldsymbol{a} \otimes \boldsymbol{b})(\boldsymbol{c} \otimes \boldsymbol{d}) = (\boldsymbol{b} \cdot \boldsymbol{c})(\boldsymbol{a} \otimes \boldsymbol{d}),$$

$$I_2(\boldsymbol{T}) = \frac{1}{2} \left[(\operatorname{tr} \boldsymbol{T})^2 - \operatorname{tr} (\boldsymbol{T}^2) \right],$$

$$\det \boldsymbol{T} \left[\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \right] = \left[\boldsymbol{T} \boldsymbol{u}, \boldsymbol{T} \boldsymbol{v}, \boldsymbol{T} \boldsymbol{w} \right],$$

$$D(\det \boldsymbol{T})[\boldsymbol{U}] = \operatorname{cof} \boldsymbol{T} : \boldsymbol{U},$$

$$(\operatorname{cof} \boldsymbol{T})_{ij} = \frac{1}{2} \epsilon_{imn} \epsilon_{jpq} T_{mp} T_{nq},$$

$$(\boldsymbol{F}^{-1})_{ij} = \frac{\partial \chi_i^{-1}}{\partial x_j}.$$

(15)