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1. We saw in the test that one of the variational terms was of the type (25)

∫

Ω

(∇× uδ) · (∇× u) dΩ. (1)

Consider the axisymmetric case where u = (ur(r, z), 0, uz(r, z)) so that

∇× u =

(

∂ur

∂z
−

∂uz

∂r

)

eθ.

Find the ‘B’ matrix that links ∇× u to the nodal degrees of freedom of a
4-node quadrilateral element. This B matrix should be expressed in terms
of Ni and/or its derivatives ∂Ni/∂ξ and ∂Ni/∂η, i = 1, 2, 3, 4. You need
not write the shape functions Ni. Express dΩ in terms of dξ dη, and finally
express the ‘K’ matrix corresponding to Eqn. (1) for a single element in
terms of B.

2. Let Ω denote the domain, and Γ denote the boundary of this domain. The (35)
governing equations for thermoelasticity are

∇ · τ + ρb = 0 on Ω,

τ = Cǫ− 3κα(T − T0)I, on Ω,

ǫ =
1

2

[

∇u+ (∇u)T
]

on Ω,

∇ · q = ρQh on Ω,

q = −k∇T on Ω,

t = t̄ on Γt,

u = 0 on Γu,

T = T̄ on ΓT ,

q · n = −q̄ on Γq.

Assume the material properties C, κ, α etc., and the ambient temperature
T0 to be given. Using indicial notation, derive any tensorial identities that
you need along the way.
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Figure 1: Rod subjected to prescribed temperature T = T1 at x = 0 and
prescribed normal flux of zero at x = L.

(a) By operating on the linear momentum balance and thermal balance
equations by the variations of the displacement and temperature, re-
spectively, and carrying out an appropriate integration by parts, find
the (coupled) variational forms for determining the displacement and
temperature fields.

(b) Discretize the displacement and temperature fields as

u = Nuû,

T = NT T̂ ,

ǫ = Buû,

∇T = BT T̂ .

(without giving the details of what Nu, Bu etc. are), and develop the
finite element matrix equations in the form

[

Kuu KuT

KTu KTT

] [

û

T̂

]

=

[

fu

fT

]

,

where Kuu, KTT , fu etc. are to be expressed in terms of Nu, N T , Bu

etc.

(c) Consider the setup in Fig. 1 where the rod has a cross sectional area of
A. By considering the 1D approximations ǫ = ∂u/∂x, q = −k∂T/∂x,
τ = E[ǫ − α(T − T0)], C ≡ E, 3κ ≡ E, etc., and using linear shape
functions for both the displacement and the temperature (i.e., Nu =
NT ), find the displacement and temperature at the end of the bar, i.e.,
at x = L, and the stress in the bar if a temperature of T = T1 is imposed
at the left end, and a normal flux of zero is imposed at x = L. Your
answers should obviously be in terms of known parameters such as E,
A, T1 etc. You may incorporate the effect of the spring through the
traction term or otherwise. Assume T0, A, and the material properties
to be constant. You may directly use the matrices at the back, and
derive any matrices that are not given there.

3. The governing equation for a beam of length L subjected to a distributed (40)
load per unit length q(x, t) as shown in Fig. 2 is given by

ρA
∂2w

∂t2
+

∂2

∂x2

(

EI
∂2w

∂x2

)

= q(x, t), (2)
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Figure 2: Beam subjected to a distributed load q(x, t).

where ρ is the density, A is the cross sectional area, I is the moment of
inertia, E is the Young modulus, and w(x, t) is the transverse displacement.

(a) Starting from the beam equation given by Eqn. (2), derive conservation
laws analogous to linear momentum and energy assuming traction-free
conditions on the entire beam structure. All your operations should be

with Eqn. (2) as a starting point, i.e., do not use terms such as
∫

V
ρv dV

etc. as we did in class ; an equation analogous to angular momentum
conservation can also be derived, but we will keep the exam simple by
ignoring that :-). (Hint: Multiply Eqn. (2) with the appropriate velocity
for deriving energy conservation).

(b) Develop the variational formulation corresponding to Eqn. (2) for the
problem shown in Fig. 2.

(c) By discretizing as

w = Nŵ,

∂2w

∂x2
= Bŵ,

where N is the matrix of Hermite shape functions, and B = ∂2N/∂x2,
and assuming a single element mesh, find the semidiscrete form of the
finite element equations with M and K expressed in terms of N and
B (do not present the expressions for the elements of N or B in terms
of Hermite shape functions.)

(d) Develop an energy-momentum conserving algorithm on the time interval
[tn, tn+1] based on the semi-discrete form. Prove the conservation prop-
erties that mimic those of the continuum that you derived in part (a)
above.

(e) Show how you will incorporate the boundary conditions for the problem
in Fig. 2. Take the entries of K as K11, K12 etc. without presenting
expressions for them.

(f) For the problem shown in Fig. 2, imagine q(x, t) is suddenly set to zero
at some time T , but with the supports still there. Is the (a) linear mo-
mentum (b) total energy, that you derived in part (a) above conserved
(both for the continuum and finite element approximations) from time
T onwards? Justify your answers.
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Some Relevant Formulae

For a linear bar element of length L:

Nu = NT =
[

1−ξ

2

1+ξ

2

]

,

Bu = BT =
dN

dx
=

[

−
1

L
1

L

]

,
∫ L

0

dNT

dx

dN

dx
dx =

1

L

[

1 −1
−1 1

]

.
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