Indian Institute of Science, Bangalore

ME 257: Endsemester Exam

Note: Some relevant formulae are given at the end which you can directly use. Derive any other formulae that you may require.

Date: 25/4/2019. Duration: 9.00 a.m.–12.00 noon Maximum Marks: 100

1. The equation for the deflection w of a membrane is given by (20)

$$\boldsymbol{\nabla}^2 w + q = 0,$$

where q is a distributed load acting on the membrane.

- (a) Assuming w = 0 on the boundary, develop the variational formulation corresponding to the above governing equation.
- (b) Using $\nabla w = (\frac{\partial w}{\partial r}, \frac{1}{r} \frac{\partial w}{\partial \theta})$, and using appropriate symmetry considerations, specialize your variational formulation to the case of a circular membrane of radius *a* with $w|_{r=a} = 0$ and $q = q_0$, where q_0 a constant.
- (c) Using a one-parameter Rayleigh-Ritz approximation for w, where your approximating function should satisfy appropriate conditions both at r = 0 and at r = a, find an approximate solution for w.
- 2. The governing partial differential equation for a vector-valued field variable (35) h(x, t) is given by

$$\mu \frac{\partial \boldsymbol{h}}{\partial t} + \boldsymbol{\nabla} \times [\boldsymbol{\nabla} \times \boldsymbol{h} - \boldsymbol{a} \times \boldsymbol{h}] = \boldsymbol{0}, \quad \in \Omega, \tag{1}$$

where $\boldsymbol{a}(\boldsymbol{x})$ is a given vector which is zero on the boundary Γ of the domain Ω .

- (a) Develop the variational formulation corresponding to Eqn. (1) under the boundary conditions (i) \boldsymbol{h} specified on Γ_h and (ii) $(\boldsymbol{\nabla} \times \boldsymbol{h}) \times \boldsymbol{n} = \boldsymbol{g} \times \boldsymbol{n}$ where \boldsymbol{g} is a given vector on the remaining part of the boundary Γ_q .
- (b) Consider the axisymmetric case where $\boldsymbol{h} = (h_r(r, z), 0, h_z(r, z)), \boldsymbol{a} = (a_r(r, z), 0, a_z(r, z))$ and $\boldsymbol{g} = g(r, z, t)\boldsymbol{e}_{\theta}$ so that

$$\nabla \times \boldsymbol{h} = \left(\frac{\partial h_r}{\partial z} - \frac{\partial h_z}{\partial r}\right) \boldsymbol{e}_{\theta}.$$

Find the '**B**' matrix that links $\nabla \times h$ to the nodal degrees of freedom of a 3-node triangular element. This **B** matrix should be expressed in terms of N_i and/or its derivatives $\partial N_i/\partial \xi$ and $\partial N_i/\partial \eta$, i = 1, 2, 3. Express $d\Omega$ in terms of $d\xi d\eta$, and finally express the ' $\mathbf{K}^{(e)}$ ' (which could be unsymmetric) and $\mathbf{M}^{(e)}$ matrices for a single element, and the load vector in terms of \mathbf{B} , \mathbf{N} , \mathbf{A} (a matrix containing the components a_r and a_z), \mathbf{g} and \mathbf{n} without carrying out the integrations but with the proper integration limits stated. You can state the load vector in terms of \mathbf{g} , \mathbf{n} and $d\Gamma$ without simplifying since you will be asked to do that in the next part.

- (c) If $\mathbf{g} = \mathbf{e}_{\theta}$ on the edge of a 9-node quadrilateral whose nodes in the local numbering scheme are say (2, 6, 3), with their coordinates in the (r, z) plane given by $\mathbf{x}_2 = (1, -1)$, $\mathbf{x}_6 = (2, 0)$ and $\mathbf{x}_3 = (1, 1)$, find the consistent load vector corresponding to the degrees of freedom on this edge (don't state the zero loads corresponding to nodes other than nodes 2, 6 and 3).
- (d) Develop a time-stepping strategy for the semi-discrete axisymmetric formulation assuming that the element matrices that you developed in part (b) above have been assembled into global matrices which you now denote by M, K etc., and state the appropriate initial conditions.
- 3. A disc of inner radius a, outer radius b, and unit width along the z-direction (45) is fixed rigidly at the inner boundary r = a, and on the outer boundary r = b is subjected to tangential tractions $s_0(t)$ which are independent of θ but dependent on time t (see Fig. 1). The radial displacement is given by

$$u_r = c_1 \cos \theta + c_2 \sin \theta + \frac{c_3}{r},$$

where c_1 , c_2 and c_3 are constants to be determined. Assuming $u_z = 0$ and treating the problem as two-dimensional (i.e., $u_r = u_r(r, \theta, t)$ and $u_{\theta} = u_{\theta}(r, \theta, t)$) and using appropriate symmetry conditions, reduce the following governing equations

$$\rho \frac{\partial^2 u_r}{\partial t^2} = (\lambda + \mu) \frac{\partial (\operatorname{tr} \boldsymbol{\epsilon})}{\partial r} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial (ru_r)}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u_r}{\partial \theta^2} + -\frac{2}{r^2} \frac{\partial u_\theta}{\partial \theta} \right],$$

$$\rho \frac{\partial^2 u_\theta}{\partial t^2} = (\lambda + \mu) \frac{1}{r} \frac{\partial (\operatorname{tr} \boldsymbol{\epsilon})}{\partial \theta} + \mu \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left[r^3 \frac{\partial}{\partial r} \left(\frac{u_\theta}{r} \right) \right] + \frac{1}{r^2} \frac{\partial^2 u_\theta}{\partial \theta^2} + \frac{2}{r^2} \frac{\partial u_r}{\partial \theta} \right],$$

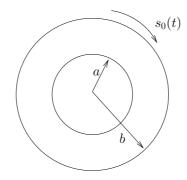


Figure 1: Hollow disk fixed rigidly at the inner boundary r = a, and subjected to tangential tractions $s_0(t)$ on the outer boundary r = b.

where

$$\epsilon_{rr} = \frac{\partial u_r}{\partial r}, \qquad \epsilon_{r\theta} = \frac{1}{2} \left[\frac{1}{r} \frac{\partial u_r}{\partial \theta} + r \frac{\partial}{\partial r} \left(\frac{u_{\theta}}{r} \right) \right]$$
$$\epsilon_{\theta\theta} = \frac{1}{r} \left(\frac{\partial u_{\theta}}{\partial \theta} + u_r \right), \qquad \text{tr } \boldsymbol{\epsilon} = \epsilon_{rr} + \epsilon_{\theta\theta}.$$

to a single partial differential equation for $u_{\theta}(r, \theta, t)$.

- (a) Using the partial differential equation for u_{θ} that you have found, develop the variational formulation over the two-dimensional region bounded by the circles r = a and r = b. Use the constitutive relation $\boldsymbol{\tau} = \lambda(\operatorname{tr} \boldsymbol{\epsilon})\boldsymbol{I} + 2\mu\boldsymbol{\epsilon}$ to simplify the boundary terms in your variational formulation.
- (b) By discretizing with respect to the space variables, develop the semidiscrete formulation in terms of the mass and stiffness matrices and the load vector. For a single linear element, derive the strain-displacement matrix **B** pertaining to your variational formulation using natural coordinates, and state the mass and stiffness matrices in terms of **N** and **B**. Do not evaluate the integrals in these expressions. For two linear elements (3 nodes), evaluate the consistent global load vector (any unknown reactions can be denoted simply by R without evaluation).
- (c) By choosing the variation of u_{θ} to be $(r, \partial u_{\theta}/\partial t)$ in your variational formulation, derive the two quantities (let us call them 'momentum' and 'energy') that are conserved in the continuum setting if $s_0 = 0$, and the boundary at r = a is also suddenly made traction free. If $s_0 = 0$, but the boundary at r = a is still kept fixed rigidly, is momentum and/or energy conserved? Justify your answers.
- (d) Develop a time-stepping strategy for your semi-discrete formulation (with appropriate initial conditions that you must state) that is 'energymomentum' conserving in the fully discrete setup. Prove that your time-stepping strategy conserves these two quantities. In these proofs, *justify* why the choices that you make for the variations are admissible.

Some Relevant Formulae

For a quadratic 1-D element:

$$N_1 = -\frac{\eta(1-\eta)}{2}, \quad N_2 = 1-\eta^2, \quad N_2 = \frac{\eta(1+\eta)}{2}.$$