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1. Treat this entire problem as a statics problem . Consider the setup shown (35)
in Fig. 1a, where the end points of two beams both of length L and with
identical properties E, I, etc., are separated by a distance ∆. The end point
of the upper beam is connected to a spring with spring constant k; the spring
is undeformed in this original configuration as shown in Fig. 1a. The tip of
the lower beam is pulled up until it is in contact with the tip of the upper
beam, and then connected to it using a pin joint. Then the system is released
so that it reaches equilibrium as shown in Fig. 1b.

(a) Modify the potential energy for a beam given by
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so as to account for the presence of the spring, and for the multipoint
constraint linking the displacements of the two beams (Note: This prob-
lem is to be solved using the multi-point constraint approach only).

(b) By taking the first variation of the modified potential energy, and dis-
cretizing the displacement field as v = Nû (you need not write the
individual elements of N), develop the finite element formulation for
solving this problem. State the stiffness matrix in terms of derivatives
of N .

(c) Using one beam element each for the top and bottom beams, write
the global (assembled) matrix system in the form Kû = f . You can
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Figure 1: Problem 1



directly use the element stiffness matrix given at the end (without sub-
stituting for a, b etc.). Incorporate the boundary conditions, and write
the complete system of equations to be solved for the free degrees of
freedom. Do not attempt to solve this system of equations.

2. The equation for Couette-type flow (you don’t need any knowledge of fluid (30)
mechanics to solve this problem; also do not use the results from the notes
directly since you are being asked to prove certain things in this problem),
with u = u(y) for y ∈ [0, h], and ν > 0, is

∂u

∂t
= ν

∂2u

∂y2
. (1)

The boundary conditions are u|y=0 = 0 and (ν∂u/∂y)y=h = p̄(t), and the
initial condition is u|t=0 = cy/h, where c is a real-valued constant (positive
or negative).

(a) Develop the variational formulation corresponding to the above equa-
tion.

(b) By discretizing the variational formulation using a single two-node lin-
ear element, develop the semi-discrete formulation corresponding to
Eqn. (1), and the above boundary conditions. You may directly use
the results at the back for deriving your M and K matrices.

(c) Incorporate the essential boundary condition into your semi-discrete
form.

(d) Using the generalized trapezoidal rule, develop the full-discrete version
of the semi-discrete equation in the previous part on the time interval
[tn, tn+1]. Eliminate vn+1 so that we can solve the fully-discrete version
for un+1.

(e) Now let p̄ = 0. Derive the growth or decay property for the variable in
your semi-discrete formulation by solving the differential equation.

(f) By mimicking this growth or decay property in your fully-discrete for-
mulation, find the values for α that lead to an unconditionally stable
algorithm. For a conditionally stable algorithm, derive the restriction
on the time step t∆.

3. The governing equation for the transverse displacement w(x, y, t) of a mem- (35)
brane whose domain is denoted by V (which is not necessarily rectangular)
subjected to a distributed load q(x, y, t) is given by
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+ q(x, y, t), in V, (2)

where T is the given tension, and ρ is the density.

(a) Denoting the variation of w by wδ, develop the variational formulation
corresponding to Eqn. (2), and identify the allowable boundary condi-
tions.
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(b) By choosing the variation wδ to be an appropriate velocity (which is
equivalent to multiplying the governing equation by an appropriate ve-
locity and carrying out an integration by parts since the variation and
the velocity satisfy the same homogeneous boundary conditions), derive
an energy conservation law for the membrane when q(x, y, t) = 0, and
when the applied load along the entire boundary is zero.

(c) By discretizing the variational formulation in part (a) as

w = Nŵ,

where N is the matrix of shape functions for a 2D element, find the
semidiscrete form of the finite element equations with M and K ex-
pressed in terms of N and B (with B expressed in terms of partial
derivatives of N using indicial notation)

(d) Assuming appropriate initial conditions, develop an energy-conserving
algorithm on the time interval [tn, tn+1]. Prove the energy-conservation
property that mimics that of the continuum that you derived in part (b)
above.

(e) If w = 0 on the entire boundary of the membrane, and if q(x, y, t) is
suddenly set to zero at some time T , will the total energy, that you de-
rived in part (b) above, be conserved (both for the continuum and finite
element approximations) from time T onwards? Justify your answers.

(f) Now consider the domain to be a circle of radius 2, with q(x, y, t) equal
to zero, and with T (∂w/∂r)r=2 = t̄(1 − e−t), where t̄ is a constant.
Considering the symmetry in the problem, we discretize only a quarter of
the domain with a 6-node triangular element with the nodal coordinates
given by (x1, y1) = (2, 0), (x2, y2)2 = (0, 2), (x3, y3)3 = (0, 0), (x4, y4) =
(
√
2,
√
2), (x5, y5) = (0, 1) and (x6, y6) = (1, 0). Find the consistent

load vector corresponding to the given natural boundary condition (Do
not evaluate any complicated integrals that arise; however, state the
proper integration limits and the integrand). While incorporating the
boundary conditions for the 6-node triangular element above, what are
the nodal variables (if any) that you will suppress (in other words, what
is the size of the K and M matrices after incorporating the boundary
conditions).

For a two-node element,
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For a beam element of length L:
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where a = 12EI/L3, b = 6EI/L2, c = 2EI/L.

Shape functions for a 6-node triangular element:

N1 = ξ(2ξ − 1), N4 = 4ξη,

N2 = η(2η − 1), N5 = 4αη,

N3 = α(2α− 1), N6 = 4ξα,

where α = (1− ξ − η).
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