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1. For a certain problem involving a vector-valued function u = (ux, uy), we get (25)
a term in the variational formulation as

∫

Ω

∇uδ : ∇u dΩ,

where the domain may be considered as two-dimensional with independent
coordinates (x, y). The stiffness matrix associated with the above term can
be written as

∫

Ω
B

T
B dΩ. Describe using equations how you would find the

B matrix using natural coordinates (ξ, η) for a 3-node triangular element
having 6 degrees of freedom ((ux, uy) degrees of freedom at each node), and
coordinates (x1, y1), (x2, y2) and (x3, y3). Assuming a unit thickness for the
two-dimensional domain, also find dΩ in terms of (ξ, η).

2. This problem is unconnected to the previous problem (although it may appear (35)
to be), and can be solved independently. The governing equation for the
velocity field v in transient Stokes flow with a prescribed pressure gradient
G(t) is

ρ
∂v

∂t
= G(t) + µ∇2

v,

(a) Develop the variational formulation for the above governing equation.
You may leave the boundary term as it is at this stage.

(b) Consider an axisymmetric velocity field (0, 0, vz(r, t)) with prescribed
pressure gradient G(t) = (0, 0, g(t)) in a circular tube of radius a with
no-slip boundary conditions at the wall r = a. Develop the semi-discrete
formulation for finding vz(r, t).

(c) Describe a time-stepping strategy to solve the semi-discrete formulation
that you have developed. You should use an unconditionally stable
scheme (justify why it is so, although you need not prove this).

(d) If g(t) = t and the initial velocity vz is (a2 − r2), state the matrix
equation (with boundary conditions incorporated) for finding the nodal
velocities at time t1 = t∆. You need not simplify this matrix equation.
You may use one quadratic element, and directly use the expressions at
the back.
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Figure 1: Problem 4

3. Derive the ‘1D’ governing equation for the longitudinal vibration of a bar with (40)
Young modulus E, cross-sectional area A and length L, fixed at one end and
spring-supported at the other (see Fig. 1) using the 1D approximations ǫ =
∂u/∂x, τ = Eǫ etc., and neglecting body forces in the general elastodynamics
equation ∇ · τ = ρ∂2

u/∂t2. The governing equation should be in terms of
u. The boundary conditions are

u|x=0 = 0, (Aτ + ku)|x=L = 0.

(a) The bar is given an initial displacement u(0) = δx/L (so that the spring
gets compressed by an amount δ) and then released. Taking the initial
velocity to be zero, find the total energy (including the potential energy
in the spring) in the system at t = 0. Take dΩ = Adx.

(b) Develop the variational formulation for the 1D governing equation that
you have derived.

(c) By making a particular choice of the variation uδ in the variational
formulation (Hint: Choose it to be either u or some derivative of u with
respect to t), determine if the total energy of the continuum system is
conserved.

(d) Develop the semi-discrete formulation for the vibrations of the structure.

(e) In case the (continuum) energy is conserved, develop a time-stepping
strategy that mimics this energy-conserving nature of the continuum (if
the total energy is not conserved, then justify why it is not conserved),
and prove that your strategy conserves energy. Using one linear finite
element (you may directly use the matrices at the back), find the total
(finite element) energy at t = 0. Is this energy the same as the total
(continuum) energy that you found in part (a)?

(f) Using one linear element for the bar, find the response at time t1 = t∆
using your proposed strategy, i.e., find the nodal displacement at x = L
and t1 = t∆.

Some Relevant Formulae

For a linear bar element of length L:

K
(e) = d

[

1 −1
−1 1

]

, M
(e) = h

[

2 1
1 2

]

.
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where d = EA/L, h = ρAL/6.
For a quadratic 1-D element of length a with midnode at the center:

∫ a

0

N
T
N dr =

a

30





4 2 −1
2 16 2
−1 2 4



 ,

∫ a

0

N
T
Nr dr =

a2

60





1 0 −1
0 16 4
−1 4 7



 ,

∫ a

0

dNT

dr

dN

dr
dr =

1

3a





7 −8 1
−8 16 −8
1 −8 7



 ,

∫ a

0

dNT

dr

dN

dr
r dr =

1

6





3 −4 1
−4 16 −12
1 −12 11



 ,

∫ a

0

N
T dr =

a

6





1
4
1



 ,

∫ a

0

N
T r dr =

a2

6





0
2
1



 .

The gradient of a vector field v in a cylindrical (r, θ, z) system is

[∇v] =

















∂vr
∂r

1

r

(

∂vr
∂θ

− vθ

)

∂vr
∂z

∂vθ
∂r

1

r

(

∂vθ
∂θ

+ vr

)

∂vθ
∂z

∂vz
∂r

1

r

∂vz
∂θ

∂vz
∂z
















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