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1. Derive the variational formulation for the governing equation and boundary (30)
condition given by

∇× (∇× u) = k2u, in Ω,

(∇× u)× n = h̄ on Γ ,

where w = ∇× u is expressed as

wi = ǫijk
∂uk

∂xj

.

You may directly use the relation a · (b× c) = (a× b) · c. From this point
on, consider the axisymmetric version of this problem, i.e,, ur = uz = 0, and
uθ(r, z) is the only nonzero component. Since there is no dependence of any
of the variables on θ, the problem is axisymmetric, and can be solved on the
r-z plane. You may directly use

(∇× u)r = −

∂uθ

∂z
,

(∇× u)z =
1

r

∂(ruθ)

∂r
.

Consider a four-noded rectangular element in the r-z plane with coordinates
of its nodes 1 to 4 given by (0, 0), (2a, 0), (2a, 2b) and (0, 2b). Thus, we have
r = (1+ξ)a and z = (1+η)b. Let V represent the three-dimensional domain.

(a) If the ‘stiffness matrix’ is given by
∫

V
BTB dV , then find an expression

for B in terms of Ni, ∂Ni/∂ξ, ∂Ni/∂η, i = 1, . . . , 4. You need not write
the shape functions Ni. Note that the derivatives of Ni should be with
respect to the natural coordinates and not with respect to (r, z). Next,
express dV in terms of dξ dη.

(b) If the mass matrix (the term associated with k2) is expressed as
∫

V
NTN ,

then state what N is in terms of the Ni, i = 1, . . . , 4.

(c) If h̄θ = γz, where γ is a given constant, acts on the edge 2-3 of the
above element, find the corresponding consistent load vector.



2. If ur = ur(r) and uθ = uz = 0, the governing equation for a linear elastic (35)
structure is given by

1

r

d(rτrr)

dr
−

τθθ
r

= 0. (1)

(a) Take the length of the cylinder along z to be unity. Using the relations

ǫrr =
dur

dr
; ǫθθ =

ur

r
, (other strains zero)

τ = λ(tr ǫ) + 2µǫ,

derive the variational formulation corresponding to Eqn. (1). One of
the integrands in this variational formulation should be expressed in
the form ǫTc (uδ)τ c, where

τ c =

[

τrr
τθθ

]

= C

[

ǫrr
ǫθθ

]

= Cǫc,

and where C is a matrix that you have to find in terms of λ and µ.

(b) For a two-node linear element with radial coordinates r1 and r2 , write
the element stiffness matrix in terms of the strain-displacement matrix
B, which in turn should be in terms of the shape functions N1, N2, and
the derivatives dN1/dξ and dN2/dξ. Do not evaluate any integrals that

arise.

(c) Use the above formulation to solve the following problem. A hollow
cylinder of inner radius a−∆ and outer radius b is shrink-fitted around
a solid cylinder of radius a as shown in Fig. 1 (the individual cylinders
before shrink fitting are shown in the upper part of the figure, and the
assembly after shrink fitting is shown in the lower part). Both cylinders
are made of the same material. Plane strain conditions are maintained
during the shrink fitting process by constraining the motion along the
z-direction (but not along the other directions) as shown in the figure,
i.e., uz = ǫzz = 0. Assume the process to be axisymmetric. Since ∆ is
assumed to be small in relation to a, the displacements at r = a for the

inner and outer cylinders are related as
[

u
(2)
r − u

(1)
r

]

r=a
= ∆, where u

(1)
r

and u
(2)
r are the displacement fields in the inner and outer cylinders. If

we use one linear element to model the inside cylinder and one linear
element to model the outside cylinder, then for some values of a, b, λ
and µ, the element stiffness matrices for the inner and outer regions are
given by

K(1) =

[

10 0
0 5

]

, K(2) =

[

5 −5
−5 10

]

,

If ∆ = 0.03, find the displacement field in the two cylinders as a function
of the natural coordinate ξ in each of the two cylinders, i.e., u

(1)
r =

u
(1)
r (ξ) and u

(2)
r = u

(2)
r (ξ)
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∆r=a−

z

r =
a

r
=
b

r = b

Figure 1: Problem 2.

3. We are interested in finding what quantities are conserved in linear elastody- (35)
namics in the presence of a temperature change ∆T . Let the usual governing
equations hold except that now τ is given by

τ = C(ǫ− ǫ0),

τ c = C(ǫc − (ǫ0)c)

where ǫ0 = α∆TI, (ǫ0)c = (α∆T, α∆T, α∆T, 0, 0, 0)T , C is the constitutive
matrix which is assumed to be symmetric and positive definite (Cijkl = Cklij),
and C is the engineering form (6× 6 matrix) of C. Assume that there is no
damping.

(a) Suppose that there is some mechanical loading in the form of tractions
or body forces, and thermal loading due to a temperature difference with
respect to the ambient ∆T (x, t). At some instant, the body forces and
tractions on the entire surface of the body are set to zero, and ∆T is set
to a constant with respect to time, i.e., the temperature difference with
respect to the ambient is ∆T (x). Deduce whether, from this moment on,
the linear and angular momenta are conserved in the continuum setting.
Also deduce whether the sum of kinetic and (mechanical) strain energy
is conserved. If not, deduce a ‘modified energy’ which is conserved.

(b) Develop a time-stepping scheme that mimics the conservation properties
of the continuum that you have derived in the part above. You may
directly use the semi-discrete form

Mü+Ku = f ,
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where

M =

∫

V

ρNTN dV,

K =

∫

V

BTCB dV,

f =

∫

St

NT t̄ dS +

∫

V

ρb dV +

∫

V

BTC(ǫ0)c dV.

Prove the conservation properties of the time-stepping scheme that you are
proposing.
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