

Indian Institute of Science, Bangalore

ME 257: Midsemester Test

Date: 24/2/2018.

Duration: 9.30 a.m.–11.00 a.m.

Maximum Marks: 100

1. Carry out the following steps : (60)

- (a) Using indicial notation, find α, β, γ and δ in the following identities:

$$\nabla \cdot [\mathbf{a} \times (\nabla \times \mathbf{b})] = \alpha(\nabla \times \mathbf{a}) \cdot (\nabla \times \mathbf{b}) + \beta \mathbf{a} \cdot [\nabla \times (\nabla \times \mathbf{b})], \quad (1a)$$

$$\nabla \cdot [(\nabla \cdot \mathbf{b})\mathbf{a}] = \gamma(\nabla \cdot \mathbf{a})(\nabla \cdot \mathbf{b}) + \delta \mathbf{a} \cdot [\nabla(\nabla \cdot \mathbf{b})], \quad (1b)$$

where $\mathbf{w} = \nabla \times \mathbf{b}$ is given by

$$w_i = \epsilon_{ijk} \frac{\partial b_k}{\partial x_j}.$$

- (b) On the domain Ω with boundary Γ , consider the functional given by

$$\Pi = \frac{1}{2} \int_{\Omega} [(\nabla \times \mathbf{u}) \cdot (\nabla \times \mathbf{u}) + (\nabla \cdot \mathbf{u})^2] d\Omega - \int_{\Gamma} \bar{\mathbf{h}} \cdot \mathbf{u} d\Gamma, \quad (2)$$

where $\bar{\mathbf{h}}$ is a given quantity. By taking the first variation, derive the variational formulation, and subsequently using Eqns. (1), the strong form of the governing equation, and the boundary condition on Γ . You may directly use the relation $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$. *Justify all steps in your derivation.*

2. The region between two concentric circles of inner and outer radii a and b , respectively, (40)

has a displacement field of the form $u_r = 0$ and $u_{\theta} = u_{\theta}(r)$, where r is the radial coordinate in a polar coordinate system (ignore z, u_z etc. in this problem). The region is subjected to the essential boundary condition $u_{\theta}(a) = 0$, and a natural boundary condition (to be specified later) at $r = b$.

- (a) Derive the variational formulation corresponding to the following governing equation for $\tau_{r\theta}(r)$ (Hint: Combine terms under one derivative):

$$\frac{d\tau_{r\theta}}{dr} + \frac{2\tau_{r\theta}}{r} = 0. \quad (3)$$

- (b) What is the allowable natural boundary condition at $r = b$? Impose a nonzero natural boundary condition with value T_0 at $r = b$, and incorporate the essential boundary condition at $r = a$, and the natural boundary condition at $r = b$ into your variational formulation.

(c) Substitute the following constitutive relation into your variational formulation:

$$\tau_{r\theta} = \mu r \frac{d}{dr} \left(\frac{u_\theta}{r} \right),$$

where μ is the shear modulus. The bilinear form $a(u_\theta, v)$ associated with the resulting variational formulation should be symmetric.

(d) Using one linear element (two nodes), formulate the stiffness matrix (which should be symmetric since $a(u_\theta, v)$ is symmetric) in terms of the strain-displacement matrix \mathbf{B} (give the expression for this matrix in natural coordinates), and the load vector. *Do not* carry out the integrations with respect to the natural coordinate ξ .

(e) Incorporate the essential boundary condition with K_{11} , K_{12} etc. denoting the entries of the stiffness matrix (since you have not carried out the integrations).

(f) Find the exact solution to this problem using the governing equation

$$\frac{d}{dr} \left(\frac{1}{r} \frac{d(ru_\theta)}{dr} \right) = 0.$$