Indian Institute of Science
 ME 261: Final Exam

Date: 6/12/22.
Duration: 9.00 a.m. -12.00 noon.
Maximum Marks: 100
Solve $(1,2), 3$ and $(4,5,6)$ as three 'bunches' so that it is easier for us to grade.

1. We are going to deal with tensors whose underlying space is 2 -dimensional. Thus, all matrices are 2×2.
(a) Consider the sequence of numbers generated by the recurrence relation

$$
\begin{equation*}
A_{n+1}=2 A_{n}+A_{n-1}, \tag{1}
\end{equation*}
$$

with $A_{0}=0$ and $A_{1}=1$. The first few numbers in this sequence are $0,1,2,5,12, \ldots$. Our goal is to find an explicit formula for A_{n}, the n 'th number in this sequence, as a function of n. With this in view, write Eqn. (1) as

$$
\left[\begin{array}{c}
A_{n+1} \tag{2}\\
A_{n}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right]\left[\begin{array}{c}
A_{n} \\
A_{n-1}
\end{array}\right],
$$

where you have to determine the numbers a_{1}, a_{2}, b_{1} and b_{2}.
One can repeat the process in Eqn. (2) by expressing $\left[\begin{array}{c}A_{n} \\ A_{n-1}\end{array}\right]$ in terms of $\left[\begin{array}{l}A_{n-1} \\ A_{n-2}\end{array}\right]$ and so on until we get

$$
\left[\begin{array}{c}
A_{n+1} \tag{3}\\
A_{n}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right]^{n}\left[\begin{array}{l}
A_{1} \\
A_{0}
\end{array}\right]
$$

where $A_{0}=0$ and $A_{1}=1$.
(b) Simplify (and this is the key step) Eqn. (3) using appropriate tensor principles.
(c) Let $\boldsymbol{S} \in$ Sym. Assuming $\lambda_{1} \neq \lambda_{2}$, and using the relations

$$
\begin{aligned}
\boldsymbol{I} & =\sum_{i=1}^{2} \boldsymbol{e}_{i}^{*} \otimes \boldsymbol{e}_{i}^{*} \\
\boldsymbol{S} & =\sum_{i=1}^{2} \lambda_{i} \boldsymbol{e}_{i}^{*} \otimes \boldsymbol{e}_{i}^{*}
\end{aligned}
$$

solve for $\boldsymbol{e}_{1}^{*} \otimes \boldsymbol{e}_{1}^{*}$ and $\boldsymbol{e}_{2}^{*} \otimes \boldsymbol{e}_{2}^{*}$ in terms of \boldsymbol{S}.
(d) Combine the results of Items 1b and 1c to obtain an expression for

$$
\left[\begin{array}{c}
A_{n+1} \\
A_{n}
\end{array}\right] \text { in terms of }\left[\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right] \text { and }\left[\begin{array}{l}
A_{1} \\
A_{0}
\end{array}\right] .
$$

(e) Give an explicit formula for A_{n} in the form

$$
\begin{equation*}
A_{n}=\frac{\alpha^{n}-\beta^{n}}{\gamma} \tag{4}
\end{equation*}
$$

where you have to determine α, β and γ.
2. Let \boldsymbol{x} denote the position vector and t denote time, and let $\boldsymbol{g}(\sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}-c t)$ be a vector-valued function of (\boldsymbol{x}, t), where $c>0$ is a constant. Find the value of the constants k_{1} and k_{2} such that

$$
\begin{equation*}
\boldsymbol{\nabla}^{2} \boldsymbol{g}=k_{1} \frac{\partial^{2} \boldsymbol{g}}{\partial t^{2}}+\frac{k_{2}}{|\boldsymbol{x}|} \frac{\partial \boldsymbol{g}}{\partial t} \tag{20}
\end{equation*}
$$

3. Consider a 1-degree of freedom oscillator - a mass (m) attached to a wall via a spring (constant k) and damper (coefficient c). The mass is released at 0 velocity from an initial distance of x_{0} at $t=0$.
(a) Write down the governing equations in terms of m, k, c, reduce it to an equation containing two constants $\omega_{n}=\sqrt{k / m}$ and ζ. Determine the motion of the mass $x \equiv x\left(t ; x_{0}\right)$
(b) If the oscillator is forced by an external force $F=F_{0} \sin \left(\omega_{f} t\right)$, what will be the new solution? Assume the initial conditions are unchanged.
(c) Qualitatively plot the oscillation amplitude as a function of ω_{f} / ω_{n}.
4. For the complex function

$$
\begin{equation*}
f(z)=\frac{\pi \sin (\pi z)}{z^{3}} \tag{5}
\end{equation*}
$$

- find the order of the pole at $z=0$.
- find the residue at $z=0$.

5. Using a suitable contour evaluate the following integral :

$$
\begin{equation*}
I=\int_{-1}^{1} \frac{\sqrt{1-x^{2}}}{\left(x^{2}-4\right)} d x \tag{20}
\end{equation*}
$$

Show all the steps clearly and state all the theorems used. Show the rigorous steps where needed.
6. Given the Bromwich integral

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} F(s) e^{s t} d s, \quad \text { find } \quad f(t)=\mathcal{L}^{-1}\left\{\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}\right\} \tag{10}
\end{equation*}
$$

A few useful theorems.

- A function f has a pole of order k at $z=z_{0}$, iff

$$
\lim _{z \rightarrow z_{0}} f(z)\left(z-z_{0}\right)^{k}
$$

is finite and also nonzero.

- if f has a simple pole at $z=z_{0}$, then

$$
\operatorname{Res}\left(f, z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f\left(z_{0}\right)
$$

- if f has a simple pole of order k at $z=z_{0}$, then

$$
\operatorname{Res}\left(f, z_{0}\right)=\frac{1}{(k-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{k-1}}{d z^{k-1}}\left(z-z_{0}\right)^{k} f\left(z_{0}\right)
$$

