Indian Institute of Science ME 261: Midsemester Test

Date: 3/10/15. Duration: 2.30 p.m.–4.00 p.m. Maximum Marks: 100

- 1. Let \boldsymbol{n} be a unit vector. Find a relation between $[\boldsymbol{n}, \boldsymbol{n} \times \boldsymbol{u}, \boldsymbol{n} \times \boldsymbol{v}]$ and $[\boldsymbol{u}, \boldsymbol{n}, \boldsymbol{v}]$. (20)
- 2. Let $S = e_1^* \otimes e_1^* 4(e_2^* \otimes e_2^* + e_3^* \otimes e_3^*)$, where $\{e_1^*, e_2^*, e_3^*\}$ are orthonormal. Find the (20) factors U, V and R in the polar decomposition of S in terms of e_1^* and I.
- 3. Let $\mathbf{S} \in \text{Sym}$ be invertible, and let $(\lambda_i, \mathbf{e}_i^*)$, i = 1, 2, 3, be the eigenvalues/eigenvectors of (30) \mathbf{S} .
 - (a) Find an expression for $cof(S^{-1})$ in terms of S and its invariants.
 - (b) Using this expression, find the eigenvalues/eigenvectors of $\mathbf{cof}(S^{-1})$.
 - (c) Using the above results determine the following: (i) If S is positive definite, does it imply that $cof(S^{-1})$ is positive definite? (ii) Conversely, if $cof(S^{-1})$ is positive definite, does it imply that S is positive definite? Justify your results by providing an example if the result is not true.
- 4. Let $\phi(\boldsymbol{x})$ be a function of position \boldsymbol{x} , and let

$$\boldsymbol{\tau} = (\boldsymbol{\nabla}^2 \phi) \boldsymbol{I} + \alpha \boldsymbol{\nabla} (\boldsymbol{\nabla} \phi). \tag{1}$$

(30)

Determine α so that

$${oldsymbol
abla}\cdot {oldsymbol au}=0.$$

Substitute the value of α that you have found in Eqn. (1), and determine tr τ in terms of ϕ . Substitute this equation into

$$\nabla^2(\operatorname{tr} \boldsymbol{\tau}) = 0,$$

to get a governing equation for ϕ . Determine if $\phi = \mathbf{x} \cdot \mathbf{x}$ satisfies this governing equation that you have determined.

Some relevant formulae

$$(\mathbf{cof} \, \boldsymbol{T})^T \boldsymbol{T} = (\det \boldsymbol{T}) \boldsymbol{I}.$$