Indian Institute of Science ME 261: Midsemester Test

Date: 1/10/16. Duration: 2.30 p.m.–4.00 p.m. Maximum Marks: 100

1. Let $\{\lambda_1, \lambda_2, \lambda_3\}$ denote the eigenvalues of T (which is not necessarily symmetric). Let (30)

$$P_1 = \lambda_1 + \lambda_2 + \lambda_3,$$

$$P_2 = \lambda_1^2 + \lambda_2^2 + \lambda_3^2,$$

$$P_3 = \lambda_1^3 + \lambda_2^3 + \lambda_3^3.$$

Show that if any invariant can be expressed in terms of the principal invariants $I_1 = \operatorname{tr} \mathbf{T}$, $I_2 = 1/2[(\operatorname{tr} \mathbf{T})^2 - \operatorname{tr} (\mathbf{T}^2)]$ and $I_3 = \det \mathbf{T}$, it can also be expressed in terms of P_1 , P_2 and P_3 . Derive any formula for det \mathbf{T} that you require in terms of \mathbf{T} by using the Cayley–Hamilton theorem

$$\boldsymbol{T}^3 - I_1 \boldsymbol{T}^2 + I_2 \boldsymbol{T} - I_3 \boldsymbol{I} = \boldsymbol{0}.$$

2. Let

 $\boldsymbol{F} = \lambda \boldsymbol{e} \otimes \boldsymbol{e} + \cos \alpha (\boldsymbol{I} - \boldsymbol{e} \otimes \boldsymbol{e}) + \sin \alpha (\boldsymbol{r} \otimes \boldsymbol{q} - \boldsymbol{q} \otimes \boldsymbol{r}),$

where $\lambda > 0$, and $\{e, q, r\}$ forms an orthonormal basis. Find the factors \mathbf{R} , \mathbf{U} and \mathbf{V} in the polar decomposition of \mathbf{F} (in terms of λ , e, q and r). You may directly use formulae related to dyadic products such as the formulae for $(\mathbf{a} \otimes \mathbf{b})(\mathbf{c} \otimes \mathbf{d})$ etc. Using the polar decomposition, and assuming \mathbf{R} to be proper orthogonal, find det \mathbf{F} (Hint: Find the components of \mathbf{U} with respect to a convenient basis that will allow finding its determinant easily).

3. Let $Q \in \text{Orth}^+$ be a *constant* rotation (not dependent on x or x^*). Let (35)

$$egin{aligned} oldsymbol{x}^* &= oldsymbol{Q}oldsymbol{x}, \ oldsymbol{T}^* &= oldsymbol{Q}oldsymbol{T}oldsymbol{Q}^T. \end{aligned}$$

Find an expression for $\nabla_{x^*} \cdot T^*$ (which denotes the divergence of T^* with respect to x^*) in terms of $\nabla_x \cdot T$ (which denotes the divergence of T with respect to x) and Q.

(35)