Indian Institute of Science ME 261: Midsemester Test

Date: 29/9/18. Duration: 9.30 a.m.–11.00 a.m. Maximum Marks: 100

1. Find the factors $\boldsymbol{R}, \boldsymbol{U}$ and \boldsymbol{V} in the polar decomposition of

$$F = I - n \otimes n$$
,

where n is a unit vector. (Hint: U and V can be positive semi-definite, and R may not be unique; if it is not unique, then just present one R that works.). Next, find the principal invariants and eigenvalues of F, U, V and R.

2. Let $\boldsymbol{W} \in \text{Skw}$, and let \boldsymbol{w} be its axial vector. Given that

$$\boldsymbol{R} = e^{\boldsymbol{W}} = \boldsymbol{I} + \frac{\sin |\boldsymbol{w}|}{|\boldsymbol{w}|} \boldsymbol{W} + \frac{(1 - \cos |\boldsymbol{w}|)}{|\boldsymbol{w}|^2} \boldsymbol{W}^2 \in \mathrm{Orth}^+,$$

find an expression for $(e^{\boldsymbol{W}})^3$ of the form $\alpha_0(\boldsymbol{w})\boldsymbol{I} + \alpha_1(\boldsymbol{w})\boldsymbol{W} + \alpha_2(\boldsymbol{w})\boldsymbol{W}^2$ where you have to determine the $\alpha_i(\boldsymbol{w}), i = 0, 1, 2$. Next, determine if $(e^{\boldsymbol{W}})^3 \in \text{Orth}^+$. If it does, then find its axis. *Justify* all steps.

3. Let \boldsymbol{x} denote the position vector, and let $\boldsymbol{u} = \boldsymbol{x}/|\boldsymbol{x}|^3$. Determine $\nabla \cdot \boldsymbol{u}, \nabla \times \boldsymbol{u}$ and $\nabla^2 \boldsymbol{u}$. (35) Determine the constant k if $\phi = k/|\boldsymbol{x}|$ and $\nabla \phi = \boldsymbol{u}$. For an *arbitrary* $\boldsymbol{u}(\boldsymbol{x})$, find a relation between $\nabla^2 \boldsymbol{u}, \nabla(\nabla \cdot \boldsymbol{u})$ and $\nabla \times (\nabla \times \boldsymbol{u})$.

Some relevant formulae

$$w_{i} = -\frac{1}{2} \epsilon_{ijk} W_{jk},$$

$$W_{ij} = -\epsilon_{ijk} w_{k},$$

$$(\mathbf{cof} \mathbf{T})_{ij} = \frac{1}{2} \epsilon_{imn} \epsilon_{jpq} T_{mp} T_{nq},$$

$$I_{2}(\mathbf{T}) = \frac{1}{2} \left[(\operatorname{tr} \mathbf{T})^{2} - \operatorname{tr} \mathbf{T}^{2} \right],$$

$$\det \mathbf{T} = \epsilon_{ijk} T_{i1} T_{j2} T_{k3} = \epsilon_{ijk} T_{1i} T_{2j} T_{3k}$$

(35)

(30)