Indian Institute of Science ME 261: Midsemester Test

Date: 2/10/22. Duration: 9.30 a.m.–11.30 a.m. Maximum Marks: 100

1. A rotation can be represented as

$$\boldsymbol{R} = \boldsymbol{e} \otimes \boldsymbol{e} + \cos \alpha (\boldsymbol{I} - \boldsymbol{e} \otimes \boldsymbol{e}) + \sin \alpha (\boldsymbol{r} \otimes \boldsymbol{q} - \boldsymbol{q} \otimes \boldsymbol{r}),$$

where $\{e, q, r\}$ forms an orthonormal basis. Determine the eigenvalues of \mathbf{R} in terms of α . Find the axis of \mathbf{R} (guesswork allowed). Determine the values of α for which $\mathbf{R} = \mathbf{I}$ and for which $\mathbf{R} \in \text{Sym} - \{\mathbf{I}\}$. When $\mathbf{R} \in \text{Sym} - \{\mathbf{I}\}$ find the eigenvectors of \mathbf{R} in terms of $\{e, q, r\}$ (if nonunique, one choice is fine).

- 2. Let $\boldsymbol{H} := \operatorname{cof} (\boldsymbol{W} \alpha \boldsymbol{W}^3)$, where $\alpha > 0$, and \boldsymbol{W} is a skew-symmetric tensor whose axial (40) vector \boldsymbol{w} is of unit magnitude. Determine \boldsymbol{H} in terms of the axial vector \boldsymbol{w} and α . Next find $(\boldsymbol{I} + \boldsymbol{H})^{-1}$ in terms of \boldsymbol{w} and α . Justify all steps.
- 3. Let $W(x,t) \in Skw$, and let w(x,t) be its axial vector.
 - (a) Find an expression for $\nabla \times W$ in terms of the gradient, divergence etc. of w.
 - (b) Let $\boldsymbol{W} = \boldsymbol{\nabla} \boldsymbol{u} (\boldsymbol{\nabla} \boldsymbol{u})^T$ be a skew-symmetric tensor. Find the axial vector of \boldsymbol{W} in terms of the curl of \boldsymbol{u} . Use the expression that you have derived in part (a) to find $\boldsymbol{\nabla} \times [\boldsymbol{\nabla} \boldsymbol{u} (\boldsymbol{\nabla} \boldsymbol{u})^T]$ in terms of curl of \boldsymbol{u} . Simplify this expression until no further simplification is possible.

Some relevant formulae

$$w_{i} = -\frac{1}{2}\epsilon_{ijk}W_{jk},$$

$$W_{ij} = -\epsilon_{ijk}w_{k},$$

$$(\mathbf{cof} \mathbf{T})_{ij} = \frac{1}{2}\epsilon_{imn}\epsilon_{jpq}T_{mp}T_{nq},$$

$$I_{2}(\mathbf{T}) = \mathrm{tr} (\mathbf{cof} \mathbf{T}) = \frac{1}{2} \left[(\mathrm{tr} \mathbf{T})^{2} - \mathrm{tr} \mathbf{T}^{2} \right],$$

$$\det \mathbf{T} = \epsilon_{ijk}T_{i1}T_{j2}T_{k3} = \epsilon_{ijk}T_{1i}T_{2j}T_{3k},$$

$$(\mathbf{cof} \mathbf{T})^{T}\mathbf{T} = (\det \mathbf{T})\mathbf{I},$$

$$(\mathbf{\nabla} \times \mathbf{T})_{ij} = \epsilon_{irs}\frac{\partial T_{js}}{\partial x_{r}},$$

$$x^{3} - ax^{2} + ax - 1 = (x - 1)(x^{2} + (1 - a)x + 1)$$

(30)

(30)