The following problems are based on the method of matched asymptotic expansions.

Problem 1: Ordering breakdown

Determine a two-term asymptotic solution for the equation

$$
\begin{equation*}
\frac{d^{3} y}{d t^{3}}+\frac{d^{2} y}{d t^{2}}+\epsilon\left[\left(\frac{d y}{d x}\right)^{2}+y\right]=\epsilon \exp (-2 x) \tag{1}
\end{equation*}
$$

on the unbounded domain $x \geq 0$ and boundary conditions $y(0)=2, \frac{d y}{d x}(0)=-1$ and $\frac{d^{2} y}{d x^{2}}(0)=1$. Where does ordering breakdown for the two-term expansion? What scaling do you expect for the 'layer' solution?

Problem 2: Two term expansions

Determine a two-term expansion for the following boundary value problem:

$$
\begin{equation*}
\epsilon \frac{d^{2} y}{d x^{2}}+\sqrt{x} \frac{d y}{d x}+y^{2}=0 \quad x \in[0,1] \tag{2}
\end{equation*}
$$

subject to the boundary conditions $y(0)=2$ and $y(1)=1 / 3$ for $\epsilon \rightarrow 0$. Plot the numerical solution of this problem alongside the expansion you've determined above. Can you compute the maximum error inside the domain for $\epsilon=0.1$ and $\epsilon=0.001$?

Problem 3: Multiple layers

Consider the boundary value problem:

$$
\begin{equation*}
\epsilon \frac{d^{4} y}{d x^{4}}-\left(\frac{1}{1-\frac{3 x}{4}}\right) \frac{d y}{d x}-8=0 \quad x \in[0,1] \tag{3}
\end{equation*}
$$

subject to $y(0)=\frac{d y}{d x}(0)=y(1)=\frac{d y}{d x}(1)=0$. Determine a composite expansion for $y(x, \epsilon)$ as $\epsilon \rightarrow 0$. As in the previous question, compare your solution against a numerical evaluation for $\epsilon=0.1,0.01$.

Problem 4: Turning layers

For the equation

$$
\begin{equation*}
\epsilon^{3} \frac{d^{2} y}{d x^{2}}+\left(x-2 x^{2}\right) y=0 \quad x \in[0,1] \tag{4}
\end{equation*}
$$

with boundary conditions $y(0)=\alpha, y(1)=\beta$, determine the location of transition layers and obtain the leading order term after matching.

Problem 5: Laminar flow through a porous medium

You are asked to evaluate the flow through a porous parallel plate channel of width $2 h$. Assume that the Reynolds number is very high so that $\epsilon=1 / R e \rightarrow 0$.
(a) Set up the problem assuming incompressible flow for a 2 D flow field $\vec{u}=(u(x, y), v(y))$ and boundary conditions $u(x, y= \pm h)=0$ and $v(y= \pm h)=V_{ \pm}$. Assume that $V_{+}>V_{-}$.
(b) Using the continuity equation, determine $u(x, y)$ and $v(y)$ in terms of an unknown function $u_{0}(x)$
(c) From the Navier-Stokes equations for this configuration, obtain an expression for the kinematic pressure $p(x, y)=\frac{1}{\rho} P(x, y)$.
(d) Non-dimensionalize all the equations, use V_{+}, h as velocity and length scales.
(e) Derive a third order ODE for $v(y)$ subject to the boundary conditions in part (a).
(f) Solve for $v(y)$ by evaluating possible combinations of values for $V_{ \pm}$. Where does a layer occur in this problem?
If you are stuck, you might want to look at the reference: I Proudman, J Fluid Mech, 1960, where this problem was first presented.

Problem 6: Heating of a current carrying insulated wire

Renovation of the department workshop has led to you questioning the need for large diameter (expensive) wires for high current applications. Consider a cylindrical wire of length L and radius R which has an outer insulation layer of thickness $R_{0}-R$. The potential difference between the ends of the wire is V. Given that it has to carry large currents, the electrical σ and thermal K conductivities of the conducting part depend on temperature as:

$$
\begin{equation*}
\sigma=\sigma_{0}\left(1-B\left(T-T_{0}\right)\right) \quad K=K_{0}\left(1-A\left(T-T_{0}\right)\right) \tag{5}
\end{equation*}
$$

the insulator layer has constant conductivity κ. The outer surface of the insulator cladding is maintained at temperature T_{0}, which also happens to be the reference temperature in Eq. 5 .
(a) Set up the problem using the heat conduction equation in both the core wire and the insulator. Remember that a volumetric heat source is operational inside the conducting part of the wire due to the current. Obtain an expression for this heat source.
(b) What are the boundary conditions at $r=R, r=R_{0}$?
(c) Non-dimensionalize the entire system using $\xi=r / R$ and $\theta=\left(T-T_{0}\right) / T_{0}$. The heating term should be now $1 / J$. What is J ?
(d) Solve the problem for very large J (what is the physical significance?) using dominant balance
(e) Now solve the more difficult complementary problem for very small $J \equiv \epsilon$. Obtain two-term asymptotic expansion for $T(r)$ in the core of the wire. Physically compare your results for $J \gg 1$ and $J \ll 1$.
If you solved this problem in the year 1970, you could have published your result. For reference, you can find the solution to this problem in: Cohen and Shair, Int J Heat Mass Transfer, 1970.

