
Singularities
Part I: Complex matters

Problem Set April 5, 2022

Many of these questions are open-ended. Some might lead to fruitful research problems.
As always, they draw on material discussed during our meetings but take things a few
notches higher. If you find yourself tied up in knots, please use one of the many references
cited during our meetings. They may provide useful clues, even though these problems were
made up by us.

Problem 1: Visualizing complex maps
The aim of this exercise is to visualize standard complex functions. Use four methods
of visualization:

• Using the conjugate vector field (CVF) representation.

• Using the hue-brightness scheme. You might find https://pypi.org/project/

cplot/ useful.

• By the old-fashioned route of mapping individual coordinate curves x = const.,
y =const. to their counterparts in the u, v plane

• By mapping simple loops (e.g., circle of various radii/centres) in the z-plane to the
Z-plane

Do this for the functions f(z) = sin(z), cos(z), tan(z), exp(z), ln(z) as well as for the
polynomials (z − z0)n for n = . . . ,−2,−1, 1, 2 . . ..

Problem 2: Some algebra and series expansions
It is useful to be able to do algebra once in a while (it’ll also help in Part II). Obtain
Laurent series expansions for the following functions about the specified points and
discuss the nature of singularities at these points. Also take special care about the
validity of the series:

(a) f(z) = [z(z − i)(z2 − 1)]
1/2

about z = −i
(b) f(z) = z1/2 [1 + sin z]−1 about z = −π/2
(c) f(z) = exp [t(z + z−1)] about origin

Problem 3: Inside or out?
Find an unsuspecting friend (preferably incompetent with winding numbers) and ask
them to draw ‘the most horrible multiple self-intersecting closed loop’ they can imagine
on a piece of paper. Now ask them to pick a point P randomly on the paper and seemingly
caught up in said horrible loop (called δ) but not on it. Based on our discussions of
winding numbers, devise a method to determine if P is inside or outside δ.

Problem 4: Complex non-destructive testing
[This problem attempts a sample calculation for the Laplace equation. A good source for
related problems is the book by Carrier, Ch. 4.]

In order to evaluate the occurrence of small edge-holes and edge-cracks in metallic plates,
people with a practical bent of mind resort to techniques called non-destructive testing.
One such is to subject said plate to a constant temperature/flux on its boundary and to
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look at the temperature field in the interior. Cracks, for instance, will show their own
signature and we will now attempt to determine this.

(a) Using the Schwarz-Christoffel technique, determine a map between a half-plane
w ≥ 0 with a vertical slit at the origin (from w = 0 to w = λi) and the upper half
z-plane z ≥ 0.

(b) Now solve Laplace’s equation in the z-plane subject to either a constant flux or
constant temperature boundary condition on z = 0.

(c) Map back the solution to the w-plane and relate the features you see to the crack
size λ.

(d) Repeat this procedure for a plate with an edge-hole: In the w-plane, the boundary
of the plate is z ∈ (−∞, 1) ∪ C+ ∪ (+1,∞) where C+ is the upper half of the unit
circle centered around the origin (plate is entirely above the real w axis). You might
want to explore the use of the inversion map z → 1/z

Problem 5: Biharmonic equation
We will now attempt to obtain singular solutions of the biharmonic equation

∇4ψ = 0 (1)

for various singular situations that we’ve discussed.

(a) Starting from the full Navier-Stokes equations for a 2D problem, obtain Eq. 1
for the streamfunction (Stokes’ flow problem). You want to systematically non-
dimensionalize the equation and set Re → 0 in a self-satisfactory manner. Alter-
natively, obtain the same equation using the equations of linear elasticity, coupled
with the conditions of elastic compatibility.

(b) Convert to z, z̄ from x, y and obtain the general solution ψ = Re(z̄f(z) +g(z)). Us-
ing this relation, derive expressions for the pressure (trace of stress tensor), velocity
(displacement) and net force for the viscous (elastic) problem.

(c) Based on these relations and using logical reasoning for jumps in various quanti-
ties, deduce expressions for f(z), g(z) for the following: Stokeslet (viscous), edge
dislocation (elastic), point force (both).

(d) How would you handle a boundary condition in each case? Since Eq. 1 is not
conformally invariant, you need some clever ideas to proceed. If you’re stuck, you
might want to take a look at DG Crowdy & Y Or Phys. Rev. E, (2010).

(e) * Convert Eq. 1 to a Wiener-Hopf problem using the technique discussed in AV
Kisil et al., Proc. Roy. Soc. A, (2021), Sec. 2(h). For a good introduction to
the Wiener-Hopf technique, look at Appendix II of the book by Sveshnikov and
Tikhonov.
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