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Bgams - Review of straight beams and introducing curved beams

Beams are one-dimensional models of slender 3-D elastic continua. They can be subject to axial
forces like bars and their behavior is same as bars in this case. Now, we will study the effects of
loads perpendiéfilar to the axis, called transverse loads. Transverse loads can act either in the y
direction or z direction for a beam shown in the figure below. The effect of transverse loads is to
bend the beam. Loads in the y direction will bend it in the xy-plane while the z-loads bend it in
the xz-plane. In what follows, we will only consider transverse loads in the y direction because
the effects are the same for z-loads as well. Additionally, a beam may also be subject to torque
(i.e., moments about the axial direction) loads. Torque loads cause the beam to twist about its
axis.

When you cut a portion of a beam and make it free-body, on the cross-section at the point where
it is cut, a vertical shear force V, and a bending moment M will exist as reactions to keep the
free-body in static equilibrium with external forces and support reactions. Our sign convection
for positive values is shown in the figure. For a curved beam, the axis is curved. In it, transverse
loads also create an axial reaction force F, as shown. Drawing shear force and bending moment
(and axial force) diagrams for curved beams is same as it is for straight beams. The difference is
only that we should move along the curved axis with a path variable s instead of x. The
transverse loads are always normal (i.e., perpendicular) to the axis.
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As can be imagined, when the beam bends, say concave down, the lines parallel to the axis but
above it contract and the ones below it elonagte. So, there must exist a line that neither elongate
nor contracts. This is called the neutral axis and taken as the axis of the beam. The zx-plane
containing the neutral axis is called the neutral plane. See the figure below. Since beam is a one-
dimensional model, we only consider stresses that involve the axial direction, i.e., o,,7,,,andz,. .

These are shown for an infinetesimally small cube taken inside a beam.

Neutral plane



Straight beam in pure bending
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Deflection of the meatal oxis
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Shear stress due to bending of beams
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Shear stress due to torque load on a beam
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For a beam with circular cross-section with transverse loads and torque....

Normal stress due to
bending , T

Shear stress due to

bending , ’f’xy

adit in @l Qi hms

Shear stress due to
torsion |, T

7



Strath energies in bars and beams
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Castiglianos theorem

Castiglianos theorem is one of the powerful applications of energy methods and is very helpful
in determining the deflections at specific points without solving for deflections everywhere. It is
also very useful in statically indeterminate structures to determine unknown reaction forces
because it facilitates determination of deflections at specific points without much work. The
theorem states that the deflection at a point is equal to the partial derivative of the strain energy
taken with respect to a dummy (or real) load applied at the point of interest in the direction of
interest. Mathematically,

Since we always imply a moment load when we say a load, the theorem can also be used to
compute deflections. Then, the load Q is interpreted as a moment. The deflection determined
using the theorem is the slope at the point where the moment is applied.

In order to apply this theorem, we just need to compute the strain energy symbolically in terms
of the load Q. If a real load does not exist at that point, we add a dummy load. After we get the
expression for the deflection (or slope), we simply substitute Q = 0. It is just as easy!




