
Chapter 13 

Speeds of motors 



Speeds of motors in vivo 

• Myosin IB – 200nm/s 
• Cytoplasmic dynein – 1000nm/s 
• Conventional kinesin – 1800nm/s 

 
• Rowers vs. porters (myosin II vs. kinesin) 



In vitro motility assays 

• Sheetz and Spudich first observed the 
transport of fluorescent beads coated with 
purified myosin moving along actin. 

• Bead Assay, Stepping Assay, Gliding assay 



Bead assay 



Gliding and stepping assays 



https://www.youtube.com/watch?v=y0QCkObJIto 

https://www.youtube.com/watch?v=FzY86nkgumU 

https://www.youtube.com/watch?v=2UdPsVSWwrE 












In vitro motility assays 

• Polarity-marked microtubules 
• Mechanical loads very small 

 



Processive and non-processive motors 

• Conventional kinesin is a processive motor, 
100s of 8-nm steps 

• Kinesin hydrolyzes about 125 molecules of ATP 
following initial binding to MT (biochemically 
verified) – 1 step per ATP 

• Ncd is a non-processive, minus end directed 
motor protein 

 



Processive and non-processive motors 

• Muscle myosin II is non-processive 
• Threshold density of myosin II is required for 

continuous motility of actin filaments  4000 
molecules /µm2 

• Myosin V and VI are processive 
• Cytoplasmic dynein is processive, but outer-

arm axonemal dynein is not. 



Processive and non-processive motors 

• Processivity/non-processivity  -- dependence of 
speed of movement on the number of 
participating molecules 

• Speed of kinesin – independent of no. of 
motors/filament length  co-ordination required 

• Myosin – actin gliding occurs below threshold 
value when methyl cellulose added (prevents 
diffusion of filaments perpendicular to their long 
axes) 

 



Processive and non-processive motors 



Hydrolysis cycle and duty ratio 

• Motors move along filaments through 
distances that are large compared to 
molecular dimensions  the motor reaction 
must be cyclic in which motor repeatedly bind 
and unbinds the filament 



Hydrolysis cycle and duty ratio 

• Average time motor domain spends attached to filament - τon 
(working stroke) 

• Average time motor remains detached – τoff (recovery stroke)  
• Duty ratio – fraction of the time that each head spends in its 

attached phase: 

𝑟 =  
τ𝑜𝑜

τ𝑜𝑜 + τ𝑜𝑓𝑓
=  

τ𝑜𝑜
τ𝑡𝑡𝑡𝑡𝑡

 



• Minimum no.  Of heads required for continuous 
movement (Nmin) 

𝑟 ≅
1

𝑁𝑚𝑚𝑚
 

• Guarantees that there will usually be at least one head 
bound to the filament 

• Eg. Conventional 2-headed kinesin, dynein, myosin V  - 
r must be at least 0.5 for each head. 

• But for skeletal muscle myosin and outer arm dynein, 
large assemblies of 50-100 crossbridges, r is small 
~0.01 to 0.02 

Hydrolysis cycle and duty ratio 



Hydrolysis cycle and duty ratio 

• If there is one-to-one coupling between 
mechanical cycles and chemical cycles, then 
we expect speed of the motor: 

𝑣 = 𝑘𝐴𝐴𝐴𝐴𝐴𝐴Δ 
• kATPase – rate at which each head hydrolyzes a 

molecule of ATP, Δ – distance moved by each 
head per mechanical cycle. 



Measurement of kATPase 

• Maximum ATPase rate measured in solution (kcat) is 
assumed to correspond to the ATPase during motility 



Speed of motors and kcat 

No direct relation! 



Step size vs. kcat 

• For HMM, 190nm/ATP , order of magnitude 
more than the crossbridge ‘step-size 
paradox’ leading to the suggestion that 
myosin might take multiple steps for each ATP 
hydrolyzed. 

• Duty ratio provides a simple explanation for 
the step-size paradox. 



Hydrolysis cycle and duty ratio 

• Filament moving with constant speed v, over 
array of fixed motor proteins. 

•  Assuming enough motors to ensure 
continuous motility (1 kinesin/50-100 myosin 
heads) 

𝑣 =
δ
τ𝑜𝑜

 

δ – working distance 
τon – time for which head is attached 



Hydrolysis cycle and duty ratio 
• Total cycle time τ𝑡𝑡𝑡𝑡𝑡 = 1

𝑘𝐴𝐴𝐴𝐴𝐴𝐴
  

 
 

(Cycle driven by ATP hydrolysis) 



Hydrolysis cycle and duty ratio 

• Each of the 100 or so crossbridges that move 
the filament contribute only 5nm of the 
250nm moved while it hydrolyzes one 
molecule of ATP 

• Each thick filament contains 300 crossbridges, 
for duty ratio of 2% in a rapidly contracting 
muscle  at all times, 6 or so crossbridges 
maintain contact between thin and thick 
filaments 



Processive motors 

• Since kinesin has high r, high ATPase rate is 
needed to attain moderate speeds 



Estimation of working distance 



• Gait of a biped is walk if “the feet move 
alternatively with one foot not clear od the 
ground before the other touches” 

• During run, times when both feet are off 

Analogy to walking and running 



Chapter 15 
Steps and forces 



Distances that characterize a motor 
reaction 

• Working distance δ (powerstroke distance) 
• Distance per ATP for each motor domain Δ 

(Speed of movement/ATPase rate per head) 
• Path distance d (Distance between the 

consecutive binding sites) 



Single motor techniques 

• Filament assay – MT held in force transducer and 
presented to a motor that is fixed to the surface 

• Bead assay – Motor attached to a bead that is 
held in a force transducer and bead presented to 
a filament fixed on the surface 

• Force transducers – cantilevered glass rods, AFMs 
or optical tweezers, must be able to produce and 
monitor forces in the piconewton range 



Single motor techniques 



Cantilevered springs 
• Slender glass fiber whose base is held in a micromanipulator – spring 

exerting known forces on the motor (principle of AFM). Stiffness of 
cantilevered fiber: 

   κ𝑓 = 3π
4

 𝐸𝑟
4

𝐿3
 (Chapter 6) 

E- Young’s modulus, L-length of fiber, r-radius 
• Stiffness of 0.001 to 1 pN/nm with glass rods (E ~ 70 GPa) of 100 to 200 

µm and radius 100-250 nm 



Cantilevered springs 

• Time constant of a cantilevered spring 

τ ≅ 0.2 η.𝐿4

𝐸.𝑟4
 (Chapter 6) 

η – Viscosity of the solution 
• Time constant for glass fibres is ~1ms  small 

enough to resolve individual transitions in 
hydrolysis cycle 

• Modify radius and length to get desired time 
constants and stiffnesses 



Optical tweezers 
• Laser bean focused down to 

a diffraction-limited spot 
using high NA lens 

• Dielectric non-absorbing 
glass or plastic bead 
experiences a force that will 
tend to move it into the 
region of highest intensity 
(focus of the laser) 

• If size of particle >> λ, force 
due to change in 
momentum of the photons 
refracted by the particle. 

• If size of particle << λ, force 
due to polarization of the 
particle induced by electric 
field component of the light 
wave 





Optical tweezers 

• Force exerted by optical trap  

𝐹𝑜𝑜𝑜 = 𝑄
𝑛𝑛
𝑐

 

• Fopt - force associated with the absorption of 
light (photon pressure) 

• nP/c – force exerted by light on a perfect 
absorber (c/n – speed of light in the medium, 
P-power) 

• Q- dimensionless constant, trapping efficiency 
 



Optical tweezers 

• If the particle does not move very far from the 
centre of the trap, the trap will behave like a 
spring with spring constant: 

κ𝑜𝑜𝑜~ 𝑄 
𝑛2𝑃
λ𝑐

 

• Spring constants in the range – 0.01 to 0.1 
pN/nm using laser powers of ~100mW on 
glass or plastic beads (n=1.50 or 1.57) of dia 
1µm 



Optical tweezers 

• Physical size of the trap is determined by λ 
and size of the object. Usually λ  of around 1 
µm used since less photodamage 

• Traps much softer, produce less force than 
cantilever beams and AFMs 

• But shorter time constants – better temporal 
resolution 



Displacements 

• Photodiode detector 
• Accurate measurement of centre of mass of 

fiber or bead   mean of distribution is can 
be measured very precisely even if the 
distribution itself is quite broad. 

• Precision of the displacement measurement is 
limited only by the number of photons that 
are counted (Appendix 15) 



Calibration 

• Thermal fluctuations of force transducers are 
picked up by the detectors 

• This is used for the calculation of the stiffness 
of the force transducer in situ 



Single molecule fluorescence 

• TIRF and laser scanning confocal 
• Limitations – limited lifetime of fluorophores 
 limited spatial and temporal resolution 

 



Steps, Paths and Forces 

• Displacement sensitivity of optical tweezers, 
glass fibers and AFMs – 1nm sufficient for 
measuring step size of motor proteins 

• Force sensitivity ~ 1pN, sufficient to resolve 
force of single motor. 

 



Conventional kinesin 

• Conventional kinesin is processive, pulling a 1µm 
glass bead 100s of nm on MT, even when under 
load of optical trap. 

• At high force, motion is not smooth 
• Steps have amplitude of 8 nm kinesin moves 

from 1 tubulin dimer to the next along a 
protofilament (length of dimer – 8nm) 

• No switching to neighbouring protofilament 
under low motor densities – no changing lanes by 
single motor 
 



Conventional kinesin 
• Maximum force that kinesin can 

work against ~ 6pN  Measured 
by making kinesin walk away 
from the centre of the trap  

• As distance increases, load 
increases and speed decreases, 
eventually leading to stalling of 
the motor. Stall force – 4 to 8 pN 
have been measured 

• Speed of movement decreases 
~linearly with increase in 
opposing force and maximum 
force independent of ATP 
concentration and temperature 



Conventional kinesin 
• Maximum work done per 

step = 6pN x 8nm = 
48pN.nm 

• Energy derived from 
hydrolysis of ATP = 100 
pN.nm 

• Therefore, maximum 
efficiency of kinesin ~50% 

• Maximum force is only 50% 
of the thermodynamic force 
(= chemical free 
energy/step size, for 
kinesin, thermodynamic 
force = 
100pN.nm/8nm=12.5pN) 

• Rate of forward stepping ~0 
at high loads 
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Myosin II 

• Only interacts transiently with actin and does not step  
• Discrete binding events observed  decrease in 

thermal fluctuations of the actin filament 
• Not processive motor 
• Binding of myosin displaces actin from average 

position, mean displacements + or – 
Large thermal fluctuations of the actin filament sweep 
binding sites past the fixed motors; motor binds to 
filament and holds it in place, displacements can be + or – 
because fluctuations are symmetric 



Myosin 
• Despite variability in 

displacement, directional 
bias for myosin  myosin 
undergoes a directed 
conformational change  of 
5nm (working distance) 

• Can be confirmed by rotating 
filament by 180 degrees 

• Length of the rotating lever 
altered by replacing the light 
chain binding domain with 
artificial levers of various 
lengths   changes 
amplitude of the step 

• Maximum force exerted by 
myosin crossbridge >= 10pN 





Structural basis for duty ratio 

• Relation between the distance per ATP and 
the path distance 

Δ = 𝑛.𝑑 
n- is an integer >=0. 
• n=0 corresponds to futile ATP hydrolysis event, 

with no associated displacement (eg.: under 
high load) 

• If n>1, the motor jumps over one or more of 
the stepping stones (myosin at low load) 



Structural basis for duty ratio 
• Duty ratio is working distance divided by distance per 

ATP, 𝑟 = δ/Δ 
• Structural expression for duty ratio: 

𝑟 =
δ
𝑛.𝑑

 

• Steric constraint that is present in moving motor-
filament system 

• If working distance δ is smaller than path distance d, 
each individual crossbridge must spend a significant 
time detached while other crossbridges move the 
filament: r<1 and motility will require an assembly of 
crossbridges 
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