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Step 1b (elastostatics) Compute the deformation of conductor 1 due to the electro-

static force. For this solve Eq. (6.33a) with the boundary equations taken from Eq.

(6.34) to get the deformed geometry of conductor 1 as shown in Figure 6.11(c).

Step 2a (electrostatics) Subtract the deformed conductor 1 and conductor 2 and solve

the electrostatic problem in the shaded region in Figure 6.11(d). Compute the changed

forces on conductor 1 due to the newly computed electric potential, electric field, and

surface charge.

Step 2b (elastostatics) Compute the deformed geometry of the conductor 1 due to the

new forces applied on the undeformed configuration to get the new deformed

geometry as shown in Figure 6.11(e).

Repeat the electrostatics and elastostatics steps until there is no more deformation

of conductor 1. At this point, the electric potential will also remain unchanged. That is,

we have obtained a self-consistent solution between the electrostatic and elastostatic

equations.

c FINITE ELEMENT FORMULATION FOR THE ELECTROSTATICS PROBLEM

The general methodology of finite element analysis was

described in Chapter 5. We now apply it to solve the

partial differential equation (PDE) governing electro-

statics [Eq. (6.23)], for a 3D domain of sufficiently

large bounding box containing the conductors and

dielectrics. Note that the discussion so far has focused

on 2D domains only; the discussion that follows is more

general and deals with 3D.

As is customary in FEA, we begin by writing the

electrostatics PDE in the weak form by multiplying it

with a trial function corresponding to the function to

be solved and then integrating it over the domain.

The function to be solved is fðx; y; zÞ. Let the weight

function be fvðx; y; zÞ. Then, we can write the weak

form of the PDE in Eq. (6.23) as

ð
V

er2f
� �

fv dV ¼ 0 (6.35)

By using the fact that er2fð Þfv ¼ er� fvrfð Þ�
e rf �rfvð Þ, Eq. (6.35) can be rewritten

ð
V

er� fvrfð Þ dV �
ð
V

e rf �rfvð Þ dV ¼ 0 (6.36)

By applying the divergence theorem [see Eq. (6.18)] to

the first integral of Eq. (6.36), we can rewrite Eq. (6.36)

as

S

e fvrf � n̂ð ÞdS�
ð
V

e rf �rfvð Þ dV ¼ 0 (6.37)

where n̂ is the outward normal to the closed surface S
enclosing volume V . From Eqs. (6.28) and (6.40), we

note that erf � n̂ ¼ eEn ¼ cs. Hence, erf � n̂ð Þ in the

first term of Eq. (6.37) can be replaced bycs, the surface

charge density. Thus, Eq. (6.37) assumes the formð
V

e rf �rfvð Þ dV ¼
S

cs fv dS (6.38)

We now turn to interpolation of fðx; y; zÞ and

fvðx; y; zÞ using shape functions and nodal values of

these quantities for a finite element (see Section 5.4.1).

That is, within a finite element with p nodes, we have

feðx; y; zÞ ¼
Xp
i¼1

Nifi ¼ Nue (6.39a)

fveðx; y; zÞ ¼
Xp
i¼1

Nifi ¼ Nuve (6.39b)

where N is a 1� p shape function matrix and ue is the

p� 1 nodal potential vector. Note that the weight

function fve over the element is also interpolated using

the same functions and the nodal vectors, uve, as in the

Galerkin method described in Section 5.2.3.3.

We also write the gradients of the interpolated

functions feðx; y; zÞ and fveðx; y; zÞ in Eqs. (6.39a) and

(6.39b):

rfe ¼ @N

@x
î þ @N

@y
ĵ þ @N

@z
k̂

� �
ue and

rfve ¼ @N

@x
îþ @N

@y
ĵþ @N

@z
k̂

� �
uve

(6.40)
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By using Eqs. (6.39a, 6.39b,) and (6.40), we can write

Eq. (6.38) for a finite element of volume Ve enclosed by

the surface Se as

ð
Ve

e rfe �rfeð Þ dVe ¼
Se

cse fve dSe (6.41a)

ð
Ve

e rfeð ÞT rfeð Þ dVe ¼
Se

cse fve dSe (6.41b)

where we have used the fact that the dot product of

two vectors can be computed using the transpose

operation on one of them. Thus, Eq. (6.417b) takes

the form

uT
e

ð
Ve

e
@N

@x

� �T @N

@x

� �
þ @N

@y

� �T @N

@y

� �(2
4

þ @N

@z

� �T @N

@z

� �
g dVe�uve

¼
Se

cse N dSe

8><
>:

9>=
>;uve (6.42)

Since uve is arbitrary, Eq. (6.42) gives

uT
e

ð
Ve

e
@N

@x

� �T @N

@x

� �
þ @N

@y

� �T @N

@y

� �(2
4

þ @N

@z

� �T @N

@z

� ��
dVe

�

¼
Se

cse N dSe

8><
>:

9>=
>; (6.43)

By taking the transpose, Eq. (6.43) can be rewritten

as

Ceue ¼ qe (6.44a)

where

Ce ¼
ð
Ve

e
@N

@x

� �T @N

@x

� �
þ @N

@y

� �T @N

@y

� �(2
4

þ @N

@z

� �T @N

@z

� ��
dVe

�
(6.44b)

qe ¼
Se

cse NT dSe

8><
>:

9>=
>; (6.44c)

Note that Ce is the element capacitance matrix, ue the

element potential vector, and qe the element charge

vector.

The next step is to assemble the element-level

equations of Eqs. (6.44a)–(6.44c) into a global equation

involving all the finite elements in a manner similar to

the description in the last paragraph of Section 5.4.2.

This yields

Cu ¼ q (6.45)

Application of the boundary conditions becomes

relevant at this stage. At any point in the domain, we

can specify either the potential or the charge but not

both. This is similar to specifying either force or

displacement at any point in elastic analysis. By refer-

ring to Figures. 6.12(a) and (b) of a typical electrostatic

problem and its coarse mesh for the purpose of illus-

tration, we note that potential is known at the nodes 10,

11, 18, 19, 26, 27, 14, 15, 22, 23, 30, and 31, and that the

specified charge is zero at all other nodes.

We then eliminate the f’s at the nodes where it is

known, by deleting the corresponding rows and col-

umns in Eq. (6.45), thus reducing it to a smaller size

involving only the nodes where f is not known.

The resulting linear system is then solved. After that,

the charges at the eliminated nodes are computed using

Eq. (6.45).

To complete this derivation, it is pertinent to give

the shape functions for the 2D problem so that the

readers can implement the procedure to write their own

computer program to solve the electrostatics problem

in 2D. Shape functions for a three-noded [i.e. p ¼ 3 in

Eq. (6.39a)] triangular finite element are:

Ni ¼ 1

2A
ai þ bix þ ciyð Þ (6.46)

where

a1 ¼ x2y3 � x3y2; b1 ¼ y2 � y3; c1 ¼ x3 � x2

a2 ¼ x3y1 � x1y3; b2 ¼ y3 � y1; c2 ¼ x1 � x3

a3 ¼ x1y2 � x2y1; b3 ¼ y1 � y2; c3 ¼ x2 � x1

(6.47a)
and

A ¼ 1

2

1 x1 y1

1 x2 y2

1 x3 y3

��������

��������
(6.47b)
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6.2.1 An Alternative Method for Solving the Coupled Problem

In Figure 6.11 and the discussion so far, we referred to the use of the FE or finite difference

method to solve the electrostatic problem in a large bounding box fromwhich the conductors

are removed. For this, we used the differential form of Gauss’s law [Eq. (6.19b) or its

simplified form in Eq. (6.23)when the region does not enclose any charge]. Alternatively, we

can also solve the integral form of Gauss’s law given in Eq. (6.17).

Integral equations can be solved using the boundary element method just as differen-

tial equations are solved using the FE method. The advantage of using the boundary

element method is that only the boundaries, and not the interiors of the objects need to

be discretized with a mesh. Thus, in the problem of RF switch [Figs. 6.10(a) and (b)], we

and ðxi; yi; ziÞ (i ¼ 1; 2; 3) are the coordinates of the

triangular element. Using Eqs. (6.46) and (6.47), the

element capacitance matrix of Eq. (6.44b) may be

computed for the 2D triangular element of thickness

t (see Figure 6.nnb) as

Ce ¼ et
4A

b21 þ c21
� �

b1b2 þ c1c2ð Þ b1b3 þ c1c3ð Þ
b1b2 þ c1c2ð Þ b22 þ c22

� �
b2b3 þ c2c3ð Þ

b1b3 þ c1c3ð Þ b2b3 þ c2c3ð Þ b23 þ c23
� �

2
664

3
775 ð6:48Þ

The explicitly integrated element matrix of the preced-

ing equation makes implementation of the FE program

easy without resorting to numerical quadrature, as

discussed in Section 5.4.7.

Figure 6.12 A sample problem in electrostatics. (a) The specifications, (b) the meshed model.
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