Design of a compliant micromechanical suspension to prescribed stiffness and frequency

Shreyash Hadke 11297 Guided by: G. K. Ananthasuresh

NE-211 – Micro and Nano Mechanics

Contents

• 'Prescribed' values of frequency and stiffness

- Literature survey
- Stiffness
 - Deflection
 - o Stress
- Frequency
 - FEA
 - Analytical
 - Effect of dimensional parameters

• Summary

'Prescribed' values

Automotive crash accelerometer

- Typical force: 1000g Stiffness co-relation
- Frequency: 5-10 KHz
- Resonance effect
- Required fundamental frequency: ~10⁴ -10⁵ Hz

Literature survey

The Folded Beam Structure

Wai-Chi et.al, Arch. Mech, 62

ANSYS

The Folded Beam Structure

Stiffness – Deflection

Deflection: For a force corresponding to 1000g

Stiffness – Stress

Stress: For a force corresponding to 1000 g

Various mode shapes

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m_{eff}}}$$

Frequency – Analytical

Stiffness – Castigliano's theorem

$$U = \int_{V} \frac{1}{2} \frac{\sigma^{2}}{E} dV \qquad \sigma = My / I \qquad I = \int_{A} y^{2} dA$$

2

$$U = \int_0^L \int_A \frac{M^2}{2EI^2} y^2 dA dx = \int_0^L \frac{M^2}{2EI} dx \qquad \qquad \delta_c = \frac{\partial U}{\partial R} = \frac{\partial}{\partial R} \int_0^L \frac{M^2}{2EI} dx$$

$$\frac{1}{k_{eff}} = \frac{1}{Et} \times \left[\frac{L^3}{2w^3} + \frac{3(1+\gamma)L}{5w} + \frac{l}{4w_l} - \frac{3Ll^2}{4w_l^3}\right]$$

Wai-Chi et.al, Arch. Mech, 62

Frequency – Analytical

Effective mass – Rayleigh principle

• For a beam of cross sectional area A, length L, and displacement at any point $\Delta(x)$, velocity at any point $\frac{d(\Delta(x))}{dt}$, and distribution function $N(x) = \frac{\Delta(x)}{\Delta_{max}}$, effective mass is given by

• $m = \rho \int_0^L N^2(x) \cdot A(x) dx$

$$m_{eff} = 8\left(\frac{13}{35}\rho AL\right) + 4\left(\frac{1}{3}\rho A_ll\right) + m_{proof\ mass} + m_{comb\ fingers}$$

Frequency – dimensional parameters

Parameters that 'might' affect resonant frequencies

• Thickness

- Relative size of proof mass
- Asymmetry
- Leg dimensions

Scaling

Frequency – dimensional parameters - thickness

Thickness

1.002x10⁶ Hz

1.016x10⁶ Hz

1.028x10⁶ Hz

Frequency – dimensional parameters – proof mass

Proof mass

1.002x10⁶ Hz

1.125x10⁶ Hz

1.011x10⁶ Hz

Frequency – dimensional parameters – asymmetry

Asymmetry

1.002x10⁶ Hz

1.273x10⁶ Hz First Mode Shape Changes!

3.013x10⁵ Hz

Frequency – dimensional parameters – asymmetry

Asymmetry

A: Modal Total Deformation 3 Type: Total Deformation		ANS 15 14.0
Frequency: 1.002e+006 Hz Unit: m 28-11-2014 22:57		
1.0658e5 Max 94738 82896 71054 59211 47369 35527 23605 11842 0 Min		Ý Lo x

A: Modal		ANN SIS
Total Deformation b		14.0
Type: Total Deformation		1480
Frequency: 1.2/31e+006 Hz	and the second	
Unit: m	and the second se	
29-11-2014 00:35		
45513 Max		
40456		
35399		
30342	Construction of the second	
25285		
20228	and a second	
15171		
10114		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5057		•
0 Min		× • • • • •

Frequency – dimensional parameters – asymmetry

Leg dimensions

1.002x10⁶ Hz

2.067x10⁶ Hz

4.05x10⁵ Hz

Frequency – dimensional parameters – scaling

Scaling

For an area of 0.5mm x 0.5 mm, folded beam structure can be designed for frequency values ranging over two orders of magnitude!

Summary

- A viable design for automotive crash test accelerometers has been proposed.
- Frequency and stiffness values are found to be within the prescribed limits.
- Resonant frequency is fairly independent of thickness and relative size of proof mass.
- Resonant frequency is a strong function of symmetry of the structure, leg dimensions, and scaling.

Thank You!