CODING ANISOTROPIC ELASTIC PROPERTIES OF SILICON

INDLAN INSTITUTE OF SCIENCE

Guided by - G.K. Ananthasuresh

Chittipolu Santhosh Kumar M.Tech - 05-16-00-10-51-14-1-11290 CeNSE

- To code anisotropic elastic properties of silicon and polysilicon
- Software : MAT-LAB

Contents

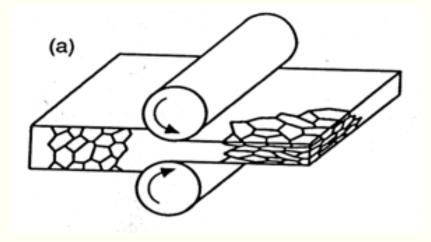
- What is Anisotropy?
- What is an Orthotropic material?
- What is a Tensor?
- Hooke's law for generalized case
- Elastic properties of Silicon -> Cubic
- Why these properties are important?
- Elastic constants for arbitrary coordinate system as function of Direction Cosines
- How to find these constants for polysilicon?
- Results

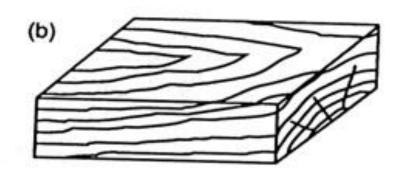
What is Anisotropy?

- Anisotropy is the property of being directionally dependent, as opposed to isotropy, which implies identical properties in all directions
- Example wood is the best anisotropic material
- Properties like wood's strength and hardness is different for the same sample measured in different orientations

Image courtesy Wikipedia

- An orthotropic material has three mutually orthogonal twofold axes of rotational symmetry so that its material properties are, in general, different along each axis
- Orthotropic materials are a subset of anisotropic materials; their properties depend on the direction in which they are measured
- Orthotropic materials have three planes/axes of symmetry that means if we choose an orthonormal coordinate system such that the axes coincide with the normals to the three symmetry planes
- An isotropic material, in contrast, has the same properties in every direction
- Examples a) rolled material b) wood



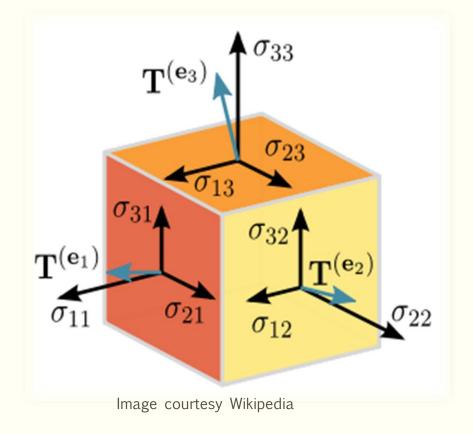


What is a Tensor?

- A tensor can be represented as a multi-dimensional array of numerical values
- The order (also degree) of a tensor is the dimensionality of the array needed to represent it, or equivalently, the number of indices needed to label a component of that array
- Examples are stress and strain. These are 2nd rank tensor and has nine components

$$\sigma_{ij} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$

 The first subscript keeps track of the plane the component acts on (described by its unit normal vector), while the second subscript keeps track of the direction



Hooke's law for generalized case

For the generalized case, Hooke's law may be expressed as

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$$
 or $\varepsilon_{ij} = S_{ijkl} \sigma_{kl}$

Where

 $C \longrightarrow Stiffness (or Elastic constant)$ S $\longrightarrow Compliance$

- Both Sijkl and Cijkl are fourth-rank tensor quantities
- Expansion of will produce nine (9) equations, each with nine (9) terms, leading to 81 constants in all
- It is important to note that both σ_{ij} and ϵ_{ij} are symmetric tensors
- Symmetric tensor Means that the off-diagonal components are equal

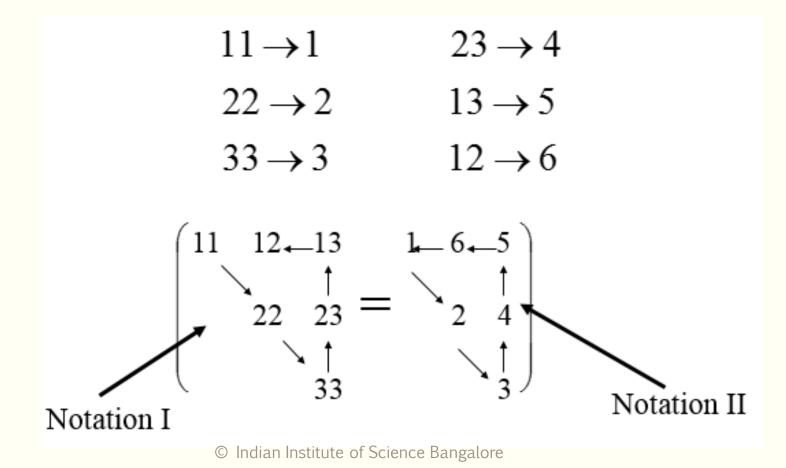
$$\sigma_{13} = \sigma_{31}, \ \sigma_{12} = \sigma_{21}, \ \sigma_{23} = \sigma_{32}$$

Hence

 Stress tensor Stra 	Strain tensor					
	$ \begin{bmatrix} 3\\23\\33 \end{bmatrix} \equiv \begin{pmatrix} \mathcal{E}_{11} & \mathcal{E}_{12} & \mathcal{E}_{13} \\ \mathcal{E}_{12} & \mathcal{E}_{22} & \mathcal{E}_{23} \\ \mathcal{E}_{13} & \mathcal{E}_{23} & \mathcal{E}_{33} \end{pmatrix} $					

- The direct consequence of the symmetry in the stress and strain tensors is that only 36 components of the compliance tensor are independent and distinct terms
- Similarly, only 36 components of the stiffness tensor are independent and distinct terms

 We can replace the indices as follows to put it into matrix form (reference from [John_F_Nye]_Physical_properties_of_crystals)



Now stress and strain in general form

$$\begin{pmatrix} \sigma_{1} & \sigma_{6} & \sigma_{5} \\ \sigma_{6} & \sigma_{2} & \sigma_{4} \\ \sigma_{5} & \sigma_{4} & \sigma_{3} \end{pmatrix} and \begin{pmatrix} \varepsilon_{1} & \frac{\varepsilon_{6}}{2} & \frac{\varepsilon_{5}}{2} \\ \frac{\varepsilon_{6}}{2} & \varepsilon_{2} & \frac{\varepsilon_{4}}{2} \\ \frac{\varepsilon_{5}}{2} & \frac{\varepsilon_{4}}{2} & \varepsilon_{3} \end{pmatrix}$$
$$\varepsilon_{1} = \varepsilon_{11}, \varepsilon_{2} = \varepsilon_{22}$$
$$\varepsilon_{3} = \varepsilon_{33}$$
$$\varepsilon_{4} = 2\varepsilon_{23} = \gamma_{23}$$
$$\varepsilon_{5} = 2\varepsilon_{13} = \gamma_{13}$$
$$\varepsilon_{6} = 2\varepsilon_{12} = \gamma_{12}$$

© Indian Institute of Science Bangalore

13

 In matrix format, the stress-strain relation showing the 36 (6 x 6) independent components of stiffness can be represented as

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{pmatrix} \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{pmatrix}$$

Also denoted as

 $\sigma_i = C_{ij}\varepsilon_j$ and $\varepsilon_i = S_{ij}\sigma_j$

Symmetry in Stiffness and Compliance matrices requires that

$$C_{ij} = C_{ji}$$
 and $S_{ij} = S_{ji}$

- Of the 36 constants, there are six constants where i = j, leaving 30 constants where i \neq j
- But only one-half of these are independent constants since Cij = Cji
- Therefore, for the general anisotropic linear elastic solid there are $\frac{30}{2} + 6 = 21$ independent constants
- For cubic there are only three independent elastic constants due to rotation symmetry

So silicon is a cubic orthotropic(means anisotropic) material

For isotropic materials it reduces to two i.e

$$C_{44} = rac{C_{11} - C_{12}}{2}$$

- In the field of microelectromechanical systems (MEMS) mono crystalline silicon is the most widely used in MEMS fabrication, both as substrate for compatibility with semiconductor processing equipment and as a structural material for MEMS device
- Because silicon is an anisotropic material, with elastic behavior that depends on the orientation of the structure, choosing the appropriate value of E for silicon can appear to be a daunting task
- However, the possible values of Y for silicon range from 130 to 188 GPa and the choice of Y value can have a significant influence on the result of a design analysis

Elastic constants for arbitrary coordinate system as function of Direction Cosines

- for xi'=lix1+mix2+nix3 where xi' is the transformed coordinates
- where li, mi, ni i = 1,2,3 are direction cosines
- Here one is normal to cut plane and other two are orthogonal to these two and in the plane.
- Let u be vector direction ratios along normal and v,w are vectors in the plane perpendicular to each other
- Hence equations to solve are u.v=0 u.w=0 v.w=0 and v x w should be parallel to u and find direction cosines for the obtained direction ratios
- Apply those direction cosines in the following equaation to find new constants in the transformed coordinates
- $c11' = c11 + Cc^*(l^4 + m^4 + n^4 1)$
- $c12' = c12+Cc^{*}(l1^{2}l2^{2}+m1^{2}m2^{2}+n1^{2}m2^{2})$
- c44' = c44+Cc*(l2^2*l3^2+m2^2*m3^2+n2^2*n3^2)
- Cc = c11 -c12 -2*c44

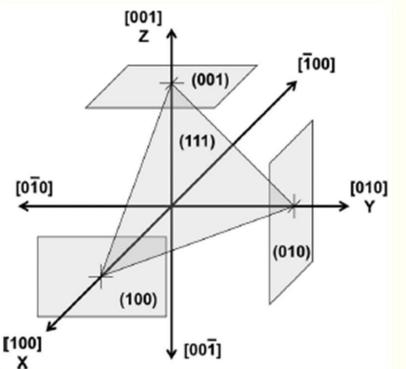


Image courtesy reference paper : What is the Young's Modulus of Silicon? Matthew A. Hopcroft, Member, IEEE, William D. Nix, and Thomas W. Kenny

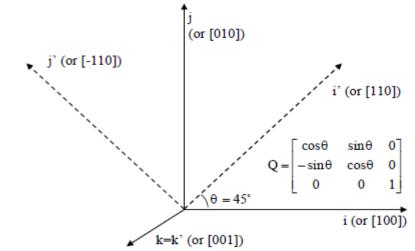
- Now we have C' matrix . Take inverse of this C' gives S' matrix.
- Hence young's modulus is given as Y = 1/S'_{ii} where i=1,2 & 3 (one along normal direction which is considered as young's modulus and remaining are orthogonal directions as discussed for orthotropic material)
- Shear modulus $G = 1/S'_{jj}$ where j = 4,5 & 6 (again orthotropic directions and one along normal)
- Poisson's ratio = $-S'_{ij}/S'_{ii}$ where $li \neq j$

How to find these constants for polysilicon?

- Polysilicon is a material with texture or grain boundaries each may orient in any direction
- We have to check all the possibilities of random orientations and calculate angular average of those constants
- That means we are finding effective constants

$$C'_{ijkl} = \sum_{p=1}^{3} \sum_{q=1}^{3} \sum_{r=1}^{3} \sum_{s=1}^{3} \sum_{s=1}^{3} Q_{pi} Q_{qj} Q_{rk} Q_{sl} C_{pqrs}$$

• Here θ varies from $-\pi$ to $+\pi$ and take avg of C'_{ijkl}



Axis rotation using rotation matrix Q. The new axes is obtained with $\mathbf{x}' = \mathbf{Q}\mathbf{x}$

Image courtesy : Ville Kaajakari

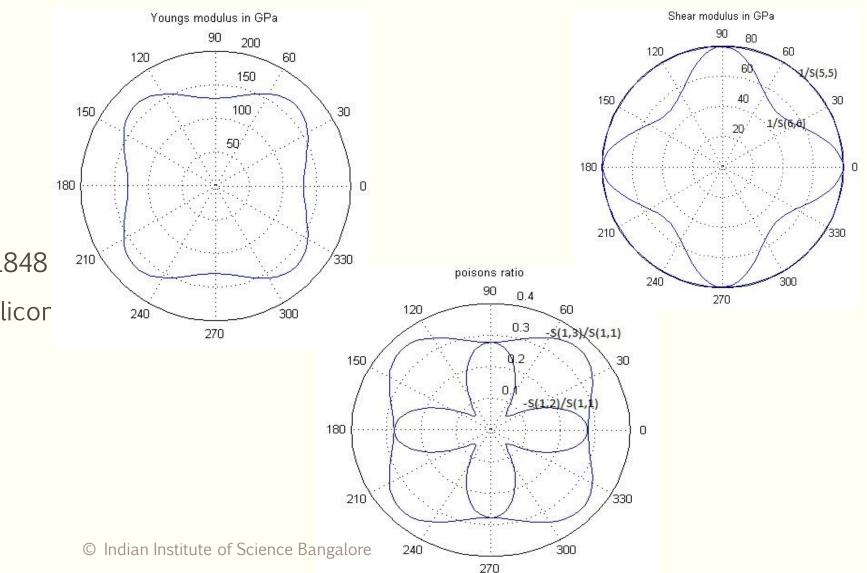
Then constants are obtained using previous formulas

Single crystal silicon elastic constants for different planes

				E211 Min							
			olu Santho								
25	Results Tal	oulated : A	Anisotropy	Elastic con	istans in di	fferent di	rections fo	r Silicon			
Planes	Youngs's Modulus in Gpa			Shear Modulus in Gpa			Poisson's Ratio				
100	130.132	130.132	130.132	79.6	79.6	79.6	-1	0.2783	0.2783		
							0.2783	-1	0.2783		
							0.2783	0.2783	-1		
010	130.132		130.132	79.6	79.6	79.6	-1	0.2783	0.2783		
		32 130.132					0.2783	-1	0.2783		
							0.2783	0.2783	-1		
001	130.132	169.101	169.1012	50.9	79.6	79.6	-1	0.2783	0.2783		
							0.3617	-1	0.0622		
							0.3617	0.0622	-1		
110	169.101							-1	0.3617	0.0622	
		9.101 130.132	169.1012	79.6	50.9	79.6	0.2783	-1	0.2783		
					10		-		0.0622	0.3617	-1
101	169.101	69.101 187.853	169.1012	57.853	67.0062	57.853	-1	0.162	0.2618		
							0.18	-1	0.18		
							0.2618	0.162	-1		
011	169.101				25				-1	0.162	0.2618
		169.101 187.853	169.1012	57.853	67.0062	57.853	0.18	-1	0.18		
							0.2618	0.162	-1		
111	187.853		169.1012	67.0062	57.853	57.853	-1	0.18	0.18		
		3 169.101					0.162	-1	0.2618		
							0.162	0.2618	-1		
21 21 20	187.767	767 166.902	169.1012		57.3519	58.396	-1	0.1874	0.1728		
							0.1666	-1	0.2647		
							0.1556	0.2682	-1		

Polysilicon results

- Youngs modulus of polysilicon in GPa is
- 151.2643 151.2643
 130.0018
- Shear modulus of polysilicon in GPa is
- 79.5204 79.5204 65.1848
- Poissons Ratio of polysilicor is
- -1.0000 0.1603 0.3238
- 0.1603 -1.0000 0.3238
- 0.2783 0.2783 -1.0000



- Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium J. J. Wortman and R. A. Evans
- What is the Young's Modulus of Silicon? Matthew A. Hopcroft, Member, IEEE, William D. Nix, and Thomas W. Kenny
- Silicon as an anisotropic mechanical material a tutorial Ville Kaajakari
- Anisotropic elasticity of silicon and its application to the modelling of X-ray optics Lin Zhang, Raymond Barrett, Peter Cloetens, Carsten Detlefs and Manuel Sanchez del Rio

