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Aim 

 To code anisotropic elastic properties of silicon and polysilicon 

 Software : MAT-LAB 
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What is Anisotropy?

 Anisotropy is the property of being 
directionally dependent, as opposed to 
isotropy, which implies identical properties 
in all directions

 Example wood is the best anisotropic 
material

 Properties like wood's strength and 
hardness is different for the same sample 
measured in different orientations
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What is an Orthotropic material?

 An orthotropic material has three mutually 
orthogonal twofold axes of rotational symmetry so 
that its material properties are, in general, different 
along each axis

 Orthotropic materials are a subset of anisotropic 
materials; their properties depend on the direction in 
which they are measured

 Orthotropic materials have three planes/axes of 
symmetry that means if we choose an orthonormal 
coordinate system such that the axes coincide with 
the normals to the three symmetry planes

 An isotropic material, in contrast, has the same 
properties in every direction

 Examples a) rolled material b) wood
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What is a Tensor?

 A tensor can be represented as a multi-dimensional 
array of numerical values

 The order (also degree) of a tensor is the 
dimensionality of the array needed to represent it, 
or equivalently, the number of indices needed to 
label a component of that array

 Examples are stress and strain. These are 2nd rank 
tensor and has nine components

 The first subscript keeps track of the plane the 
component acts on (described by its unit normal 
vector), while the second subscript keeps track of 
the direction
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Hooke’s law for generalized case

 For the generalized case, Hooke’s law may be expressed as

 Where 

 Both Sijkl and Cijkl are fourth-rank tensor quantities 

 Expansion of will produce nine (9) equations, each with nine (9) terms, leading to 81 constants in all

 It is important to note that both ij and ij are symmetric tensors

 Symmetric tensor Means that the off-diagonal components are equal

C     Stiffness (or Elastic constant)
S     Compliance

322321123113 ,  
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 Hence  

 Stress tensor                                 Strain tensor

 The direct consequence of the symmetry in the stress and strain tensors is that only 
36 components of the compliance tensor are independent and distinct terms

 Similarly, only 36 components of the stiffness tensor are independent and distinct 
terms
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 We can replace the indices as follows to put it into matrix form ( reference from 
[John_F_Nye]_Physical_properties_of_crystals)
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 Now stress and strain in general form 
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 In matrix format, the stress-strain relation showing the 36 (6 x 6) independent 
components of stiffness can be represented as

 Also denoted as 
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 Symmetry in Stiffness and Compliance matrices requires that

 Of the 36 constants, there are six constants where i = j, leaving 30 constants where 
i  j

 But only one-half of these are independent constants since Cij =  Cji

 Therefore, for the general anisotropic linear elastic solid there are                  
independent constants

 For cubic there are only three independent elastic constants due to rotation 
symmetry
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Elastic properties of Silicon -> Cubic

 So silicon is a cubic orthotropic( means anisotropic) material

 Cij =

 For isotropic materials it reduces to two i.e
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Why these properties are important?

 In the field of microelectromechanical systems (MEMS) mono crystalline silicon is the 
most widely used in MEMS fabrication, both as substrate for compatibility with 
semiconductor processing equipment and as a structural material for MEMS device

 Because silicon is an anisotropic material, with elastic behavior that depends on the 
orientation of the structure, choosing the appropriate value of E for silicon can 
appear to be a daunting task 

 However, the possible values of Y for silicon range from 130 to 188 GPa and the 
choice of Y value can have a significant influence on the result of a design analysis
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Elastic constants for arbitrary coordinate system as function of 
Direction Cosines 

 for xi'=lix1+mix2+nix3 where xi’ is the transformed coordinates

 where li, mi, ni i = 1,2,3 are direction cosines 

 Here one is normal to cut plane and other two are orthogonal to 
these two and in the plane .

 Let u be vector - direction ratios along normal and v,w are vectors in 
the plane perpendicular to each other

 Hence equations to solve are u.v=0 u.w=0 v.w=0 and v x w should be 
parallel to u and find direction cosines for the obtained direction 
ratios

 Apply those direction cosines in the following equaation to find new 
constants in the transformed coordinates

 c11' = c11 +Cc*(l^4+ m^4+n^4 - 1)

 c12' = c12+Cc*(l1^2*l2^2+m1^2*m2^2+n1^2*n2^2)

 c44' = c44+Cc*(l2^2*l3^2+m2^2*m3^2+n2^2*n3^2)

 Cc = c11 -c12 -2*c44
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Elastic constants

 Now we have C’ matrix . Take inverse of this C’ gives S’ matrix.

 Hence young’s modulus is given as Y = 1/S’iiwhere i=1,2 & 3 ( one along normal 
direction which is considered as young’s modulus and remaining are orthogonal 
directions as discussed for orthotropic material)

 Shear modulus G = 1/S’jj where j = 4,5 & 6 (again orthotropic directions and one 
along normal)

 Poisson’s ratio = - S’ij/S’iiwhere Ii j 
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How to find these constants for polysilicon?

 Polysilicon is a material with texture or grain boundaries each may orient in any 
direction

 We have to check all the possibilities of random orientations and calculate angular 
average of those constants

 That means we are finding effective constants

 Here θ varies from –π to +π and take avg of C’ijkl

 Then constants are obtained using previous formulas
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Single crystal silicon elastic constants for different planes
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Polysilicon results

 Youngs modulus of 
polysilicon in GPa is 

 151.2643  151.2643 
130.0018

 Shear modulus of 
polysilicon in GPa is 

 79.5204  79.5204  65.1848

 Poissons Ratio of polysilicon 
is

 -1.0000 0.1603 0.3238

 0.1603 -1.0000 0.3238

 0.2783 0.2783 -1.0000
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