Analytical Verification of Equivalence of Maxwell Stress Tensor AND

Electrostatic Surface Force

Shuvrangsu Das

OUTLINES

- Conductors and Dielectrics
- Ponderomotive force
- Equivalent Stress Tensor
- Maxwell Stress Tensor
- Striction Stress
- Traction
- Traction on Surface charge
- Traction on Surface charge of Conductor
- References

Conductors and DiELECTRICS

- Materials can be conductors, insulators, semiconductors.

Photo: Scientific sentence

- Any charge introduced into conductor distributes itself over its surface. This displacement, though microscopic, is also found in dielectrics.
- This displacement is characterized by 'electric displacement' \boldsymbol{D} and defined as,

$$
\boldsymbol{D} \stackrel{\text { def }}{=} \varepsilon_{0} \boldsymbol{E}+\boldsymbol{P} \stackrel{\text { def }}{=} \varepsilon \boldsymbol{E}
$$

\boldsymbol{P} is electric polarization vector, ε_{0} is permittivity of free space, ε is permittivity of dielectric.
Micro and Smart Systems, G. K. Ananthasuresh, K. J. Vinoy, S. Gopalakrishnan, K.N. Bhat, V.K. Aatre.

Ponderomotive Force

- The expression of Ponderomotive body force of an electric field is expressed as

$$
\boldsymbol{f}=\Psi_{v} \boldsymbol{E}-\frac{1}{2} \boldsymbol{E} . \boldsymbol{E} \boldsymbol{\nabla} \varepsilon+\frac{1}{2} \boldsymbol{\nabla}\left(\boldsymbol{E} . \boldsymbol{E} \frac{\partial \varepsilon}{\partial \rho_{m}} \rho_{m}\right)
$$

ρ_{m} is the mass density of dielectric.

- Total force applied on the body

$$
\boldsymbol{F}=\int_{V} \boldsymbol{f} d V
$$

Assumptions:
1.Value of ε changes smoothly in the interfaces of different media.
2.Surface free charge is absent.
$3 . V$ is total electric field.
Fundamentals of theory of Electricity, I. E. Tamm.

Equivalent Stress Tensor

- Let $\boldsymbol{\tau}_{\boldsymbol{e}}$ denote stress tensor equivalent to body force. So,

$$
\begin{gathered}
\boldsymbol{F}=\int_{V} \boldsymbol{f} d V=\oint_{S} \boldsymbol{\tau}_{\boldsymbol{e}} \boldsymbol{n} d S \\
\boldsymbol{N}=\int_{V} \boldsymbol{R} \times \boldsymbol{f} d V=\oint_{S} \boldsymbol{R} \times\left(\boldsymbol{\tau}_{\boldsymbol{e}} \boldsymbol{n}\right) d S
\end{gathered}
$$

where \boldsymbol{F} and \boldsymbol{N} denotes total force and total moment.

- Total moment equality makes $\boldsymbol{\tau}_{\boldsymbol{e}}$ to be symmetric.
$\circ \boldsymbol{f}$ is decomposed into two components

$$
\begin{aligned}
\boldsymbol{f}=\boldsymbol{f}_{1}+\boldsymbol{f}_{2}, & \text { where } \boldsymbol{f}_{1}
\end{aligned}=\Psi_{v} \boldsymbol{E}-\frac{1}{2} \boldsymbol{E} \cdot \boldsymbol{E} \boldsymbol{\nabla} \boldsymbol{\varepsilon}
$$

Fundamentals of theory of Electricity, I. E. Tamm.

Maxwell Stress Tensor

- Now, $f_{1 x}=(\boldsymbol{\nabla} . \boldsymbol{D}) E_{x}-\frac{1}{2} \boldsymbol{E} \cdot \boldsymbol{E} \frac{\partial \varepsilon}{\partial x}$

$$
\begin{aligned}
& (\boldsymbol{\nabla} \cdot \boldsymbol{D}) E_{x}=\boldsymbol{\nabla} \cdot\left(E_{x} \boldsymbol{D}\right)-\boldsymbol{D} \boldsymbol{\nabla} \cdot E_{x} \\
& \text { and } \boldsymbol{D} \boldsymbol{\nabla} \cdot E_{x}=\varepsilon \boldsymbol{E} \boldsymbol{\nabla} \cdot E_{x}=\frac{\varepsilon}{2} \frac{\partial E \cdot E}{\partial x}
\end{aligned}
$$

- Hence, $f_{1 x}=\frac{\partial\left(E_{x} D_{x}-\frac{\varepsilon}{2} E . E\right)}{\partial x}+\frac{\partial E_{x} D_{y}}{\partial y}+\frac{\partial E_{x} D_{z}}{\partial z}$
- Similarly, $f_{1 y}=\frac{\partial E_{y} D_{x}}{\partial x}+\frac{\partial\left(E_{y} D_{y}-\frac{\varepsilon}{2} E . E\right)}{\partial y}+\frac{\partial E_{y} D_{z}}{\partial z}$

$$
f_{1 z}=\frac{\partial E_{z} D_{x}}{\partial x}+\frac{\partial E_{z} D_{y}}{\partial y}+\frac{\partial\left(E_{z} D_{z}-\frac{\varepsilon}{z} E \cdot E\right)}{\partial z}
$$

- Tensor $\boldsymbol{\tau}_{\boldsymbol{e m}}$ corresponding to \boldsymbol{f}_{1} is termed as Maxwell stress tensor.

$$
\boldsymbol{\tau}_{\boldsymbol{e m}}=\varepsilon\left(\boldsymbol{E} \otimes \boldsymbol{E}-\frac{1}{2}(\boldsymbol{E} . \boldsymbol{E}) \boldsymbol{I}\right)
$$

Fundamentals of theory of Electricity, I. E. Tamm.

STRICTION STRESS

- Tensor $\boldsymbol{\tau}_{\boldsymbol{e s}}$ corresponding to \boldsymbol{f}_{2} is striction tensor

$$
\boldsymbol{\tau}_{e s}=\frac{1}{2}\left(\boldsymbol{E} \cdot \boldsymbol{E} \frac{\partial \varepsilon}{\partial \rho_{m}} \rho_{m}\right) \boldsymbol{I}
$$

\circ Equivalent stress tensor, $\boldsymbol{\tau}_{\boldsymbol{e}}=\boldsymbol{\tau}_{\boldsymbol{e s}}+\boldsymbol{\tau}_{\boldsymbol{e m}}$

- If we are not interested in the distribution of Ponderomotive forces over the volume of an arbitrary body, but only their resultant, it is sufficient to consider only Maxwell's force and stress.
- Condition: The body is surrounded by a liquid dielectric in mechanical equilibrium or vacuum.

Fundamentals of theory of Electricity, I. E. Tamm.

Traction

- The traction on a surface element with unit normal \boldsymbol{n} is

$$
\begin{aligned}
\boldsymbol{t}=\boldsymbol{\tau}_{e} \boldsymbol{n} & =\varepsilon E_{n} \boldsymbol{E}-\frac{1}{2} \boldsymbol{E} . \boldsymbol{E}\left(\varepsilon-\frac{\partial \varepsilon}{\partial \rho_{m}} \rho_{m}\right) \boldsymbol{n} \\
\boldsymbol{t}_{m} & =\boldsymbol{\tau}_{\text {em }} \boldsymbol{n}=\varepsilon E_{n} \boldsymbol{E}-\frac{\varepsilon}{2} \boldsymbol{E} . \boldsymbol{E} \boldsymbol{n}
\end{aligned}
$$

- Surface charge is a discontinuity.
- The traction on this discontinuity can be derived from above traction by considering charged layer of finite thickness, then passing over in limit to an infinitely thin layer.

Fundamentals of theory of Electricity, I. E. Tamm.

Traction on Surface charge

- $t_{1 n} d S=-\varepsilon_{1}\left(E_{1 n} \boldsymbol{E}_{1}-\frac{1}{2} \boldsymbol{E}_{1} \cdot \boldsymbol{E}_{1} \boldsymbol{n}\right) d S$
- $t_{2 n} d S=\varepsilon_{2}\left(E_{2 n} \boldsymbol{E}_{2}-\frac{1}{2} \boldsymbol{E}_{2} \cdot \boldsymbol{E}_{2} \boldsymbol{n}\right) d S$
- Net traction on this thick layer,

$$
\begin{aligned}
\boldsymbol{t}=\boldsymbol{t}_{2 n} & -\boldsymbol{t}_{1 n} \\
& =\varepsilon_{2}\left(E_{2 n} \boldsymbol{E}_{2}-\frac{1}{2} \boldsymbol{E}_{2} \cdot \boldsymbol{E}_{2} \boldsymbol{n}\right) \\
& +\varepsilon_{1}\left(E_{1 n} \boldsymbol{E}_{1}-\frac{1}{2} \boldsymbol{E}_{1} \cdot \boldsymbol{E}_{1} \boldsymbol{n}\right)
\end{aligned}
$$

- This relation also holds in the limit.

Fundamentals of theory of Electricity, I. E. Tamm.

Traction on Surface charge of Conductor

- For Metal $\boldsymbol{E}_{1}=\mathbf{0}, \boldsymbol{E}_{2}=E_{2} \boldsymbol{n}$

$$
\boldsymbol{t}=\varepsilon_{2}\left(\frac{1}{2} E_{2} E_{2}\right) \boldsymbol{n}
$$

- Taking a gaussian surface on the surface of conductor,

$$
\begin{aligned}
\varepsilon_{2} E_{2} & =\Psi_{s} \\
\boldsymbol{t}=\varepsilon_{2}\left(\frac{1}{2} E_{2} E_{2}\right) \boldsymbol{n} & =\frac{1}{2} \frac{\Psi_{s}^{2}}{\varepsilon_{2}} \boldsymbol{n}
\end{aligned}
$$

Surface of Conductor

Fundamentals of theory of Electricity, I. E. Tamm. Micro and Smart Systems, G. K. Ananthasuresh, K. J. Vinoy, S. Gopalakrishnan, K.N. Bhat, V.K. Aatre.

