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% Introduction : What is Squeeze Film and when does it occur?
% Motivation: Why is it important to study?

% Various MEMS devices showing Squeeze Film Effects

** Modelling : The Reynolds Equation

% Solution Methods

% The Eigen-expansion Method

% Understanding the Results
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Schematic of Squeeze flow*

| L  F=[PdA
—
+ F=[|Fllexp(i (wt-¢))
— . e Fs= || F || cos(d)
* Fd= || F || sin()
* Ksg=Fs/6h
Stiffness effect Damping effect * Csq=Fs/0hw
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* Animation courtesy : Siddartha Patra, ME 2011, Mechanical Engineering, IISC Bangalore 3



Introduction : Squeeze Flow
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Introduction

Introduction : Relevant Conditions for
Squeeze Film Effects
Knudsen Number (Kn) St
Continuum Flow regime A\ L, A ; mean free path
K,=> % - P
I [ h = characteristic flow

Vibration normal to a

s length

i * Jq Ty e
fixed substrate Flow B glme/f),lgyls\gn pap——
Si (ngh Q) based Range of Kn Flow regime
MEMS devices Kn < 0.01 Continuum flow regime

0.01 < Kn < 0.1 | Shp flow regime
LW >>h
Y
h
Geometry aspect W
Others
Materials aspect G0’

* Animation ( MEMS Tuning Gyro )Courtesy JP Reddy, CeNSE, IISC
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Motivation: Importance of squeeze film

Amplitude Plif=>

Gap to length ratio*

Shift of resonant peak at different h/L ratios
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Change in effective stiffness and
Damping *

1
w/o SQF
— h/L=.02
— h/L=.017
h/L=.015
h/L=.01
— h/L=.005

Meq® + (Ceq + Csq)T + (Keq + Ksq)r = Fosin(wt)

L -
107
freguency @ (KHzjJ==>

Fosin ()

* ME Thesis, S Patra, Indian Institute of Science, Bangalore, 2011
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Squeeze Film in MEMS devices
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Getting to the Reynolds Equation

Results Interpretation

Under continuum hypothesis fluid flow is modelled using the Navier Stoke’s Equation

Diti 9P 4 e 4= |2 2 (Y w3
1 = — J i S Le;; — — - u)0;;
S YR T U P U / @

Assuming small temperature differences within fluid ‘W’ can be
treated as constant and we can rewrite (1) as

Du; ap ) |
= e | VUi 4 == (V - u 2
P Dr ox; P8 +‘“’[ “it 3o )] O

Assuming incompressible flow V.-u=0l
we get from equation (2)

Du 3
— —_V V.
e ; p+pg+pVu @
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Key equations

a —
Continuity _,0 + V.(pu) =0

ot
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Expanded=NaviersStokes

FE+HEL.'.+1;H_E]+ waﬂ\— _@+ Irfazﬂ+"a?3”'+aztf

Ph at ax dy dz | PEy dy #h&rz dy’ et
Isothermal [Erw . dw . aw N dw ) dp N 3w N 3w N w
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Navier Stokes

(g AR
EE RONR

Neglect Body Neglect fluid Thin Film Small am.p of Fully Developed
forces inertia thickness Osc. flow
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Thus we arrive at the 2D Reduced NS Eqn.

dy 0z

@_ 0 ( du) and Jp B, ( CJU) ‘ No Slip — BC

a_ — a |Hq~ = e
Or 0z \ 02 0z =0,v=0at z f +h/2

a) SFD Flow - normal motion b) plate Top vie

Moving plate |
_ Velocities
“I Squeeze-film ‘ 1 {‘j
Fixed plate ~ - | u = ﬂa—i(ﬂg - }12/4)
v 19
P, 2 2
v= P2 p2/4
Flow rates Y79 1 9y ~ /4)
h® dp q h? Op
r— T T, all y = T T -
1 12 Oz Ty 124 dy

* Source [2] 11
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Using Velocities : :
° U = i@(;ﬂﬂ—hg/d) & |y = i@ z* — hﬂ/‘i)
2p1 Ox 20 Oy

0 (ph? Op d (ph?® Op 123(10?1-)
Or \ p Ox Oy \ 1 Oy ot

Isothermal Flow
p o p

o (ph® op N o (ph? Op _123(ph-)
Or \ p Ox Jy

h? O h? o
4 = ————, and qy = - &
1241 Ox 121 Oy

ot

p Oy
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a*p  9°p  12p ap ah Linearized compressible Reynolds
— = hao— +Py—
ax? ayt | Pk “ ot Equation
‘o 3O ad e o o
——+t—|=0 + Linearized Non dimensional
0X aY ot 0Ot compressible Reynolds
Equation

Squeeze Number
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The Squeeze number
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Rarefaction

Ambient pressure

Length to air gap ratio

Oscillation frequency
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Analytical techniques

Variable Acoustic
Separation Impedance

Perturbation
Methods

Mixed
Methods Equivalent
Circuit
Models
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boundary: All sides clamped plate
Geometry — flow B.C.’s

Structural BC — all sides clamped
0000
Rectangular plate — all sides open
000C I‘
OO0CC I
I
ococ I I
I
occe I I
CCCC I_ I
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We are solving linearized Reynolds eqn.

Consider homogeneous form of (1)

Using eigen expansion and separation of
variables we assume

Where

Thus from (2), (3), and 4 we get

Now assume the following

: oP oH
2 2 2
VP —a 5 8! By (1)
,OP
VQP — '2.— =0 -
8} 5 (2)
P = -u.(:r}y, t) — Q)
u = Z f(‘Bj y)an(f) —_— 4
vﬂf _ &9% _ g ®)
f T T
k2, = k2 + K — ©

f mn a-mn'*:"jjm-n(iE ; y) — ()
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Thus we get _ ) -
P % a?ﬂ-ﬂ-ir mmn (I:‘ y)T(t) — (8)
Assuming harmonic oy
source term H = oge™ Q)
Thus choosin )
g T(f) _ Ei-mt — (10)
Using (8),(9),(10) and Reynolds Egn
Z _a'?n-n-k:rgnn.r'?i]-mn(ina y)e-iwt o ﬂmnﬂgﬁlmn(m: y)'iweiwt — 6§beiwt - (b
Multiplying both sides of (11) by Uz, y) e (12)

And using orthogonality //-;g;_mﬂ(m,y)ﬂ}pq(mj y)drdy = dmndp, — (13)
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L
We get g’ { 1w Gty dyda

I —_— (14)
[ [ [—k2, —iwa?|2, dydx
0 0

Kinematic BCs are satisfied

Now the first mode shape of the plate 2 2
s . mr . Ty (15)
can be approximated as ¢(x,y) = sin 7. ) M\

Thus the solution is given by (8) P =>" amptmn(z,y)T(t)

Where Ui (2, Y) Is an admissible eigen function

Open Closed oP
—> P=0 -

Boundary Boundary on !
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Kinematic BC’s

Results Interpretation
,. AN A
O(z,y) = sin 7 ) sin{ 5

m=)  No deflection at fixed edges ™ o(z,y)=0@ [xr =L, y=W

=)  Maximum deflection at center =) T =

6. (2,y) = 0 and ¢, (z,y) = 0
QII(Iy)QyEJ(Iy) T er(“Tj y)ﬁ > D
Grz(,y) <0
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vzﬁl‘lmn —|_ k?n-nﬂ}mﬂ — 0

?ﬁ';’-m-n(d":ﬁ y) = Xm(m)}/n(y)
k2 = ki + k2

X, Y, + X, Y., "+ k> XY, =0

T

X,, = Asin (k,,x) + B cos (k;,x)
Y, = Csin (kyxz) + D cos (kpz)

Ymn(z,y) = sin (mgm) sin (n‘;{ﬂ)
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All sides open

Zero pressure B.C’s P(0,y) = P(L,y) =0
P(z,0) = P(x, W) =0

Admissible eigen . (mmx\ . [(nmy
function Ymn(2,y) = sin ( L ) S ( W )

. 2 2
And using d(z,y) = sin (?) sin (;Tg) with j
.1
P = mn f"mn 9 Tt -
C Z Amn Y (I y) ( ) - L A, = O

—

L
[ [ iwa?dmdyda
00

m.n

L
/
0

o3

=

T

) —iwa?]? dydx
with  T(t) =™ E
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[i20 (m23% + n?) + 2] sin (m«-x) <in ( ﬂ)

Non dimensional L W

P = —646
pressure . ?;dd (14 (m? 3% + n?)? + o? mnn?(m? — 4)(n? — 4)
Total Force Fioi = //Pap(i“:y:t)di"dy

m,neodd

_ —25600" 1

F. =
s v ZEdd m2n2(m?2 — 4)(n2 — 4) [r*(m2B2 + n?)? + ¢2]
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Stiffness Damping

10’ - : : 0.14 S —
. . —0000
¢ —0000 £ ox2 —000C |
£ —000C £ ~=00CC
2 10 —00CC | - 3 0 —0CoC
= —O0COC = —O0CCC
= i el §
5 —0CCe £ 0.08
g ccec S 0.06
CE 10 4 oE
- =
= = 0.04
= =)
’ z
0.02
6
10" 10’ 10' 10° 10° 10" 10’ 10' 10° 10°
Squeeze number Squeeze number

il N
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comparison among flow BCs

Summary

Stiffness Ratios Damping Ratios

10

Stiffness ratio

Damping ratio

10° 10° 10° 10’ 10 10 107 10" 10’ 10’ 10 10
Squeeze number Squeeze number
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Results : Pressure and Phase variation:

OO0CC

Pressure variation: a) o0 =0.1, b) o =1000
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*  We have seen when and where squeeze film effects occur.

*  We discussed modeling aspects and solution methods.

e Variation of squeeze film parameters with squeeze number was shown.
*  Effect of flow boundary conditions were discussed.

* Pressure and phase variation with squeeze number were shown.

Other aspects in squeeze film modeling

Complexities Coupled Domains Commercial Software
for Modeling Squeeze

Rarefaction Structural Film

Compressibility Fluid

Inertia Electrostatic ANSYS

Perforations COMSOL

Non trivial BC’s NISA

Complex geometries
28
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Losses in MEMS devices

Losses in MEMS Devices

Internal External

Bulk Losses ‘ Support Losses

Surface Losses \ j
Support structure
/ \  absorbing vibration
Surface treatment
damages

Total Quality factor for a system is
given as :

Fluid Flow Losses

Squeeze Film Damping

Drag ‘

1 _Z 1
Qtotal : Qi
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Definitions and Basic Terminology

Number Density of _ P
molecules (n)

P = Pressure
K, ( Boltzmann Const) = 1.3805 x 1023
T = Temperature

Under standard conditions
P=1.013x10° Pa (1 atm)

T=273.15K
n=2.69x 102 x m3

Molecular diameter(d)

Under STP using Hard sphere model
d~ 3.7x101%m

1

Mean Free Path A ~ 2rd2n

Average distance travelled by a molecule
between two successive collisions

Under ambient conditions

T=300K

d~ 3.7x101%m

n=2.41x10%° x Pm?3

A =0.0068/P and for P=1.013 x 10° Pa
(1atm)A =67 nm

Characteristic flow length (h)

Characteristic length of the flow channel in
case of Squeeze film it is the gap thickness




Effective Viscosity™

Author Reference | Effective Viscosity (1) Derived from
H ’ y
Burgdorfer 1959 [17] 136K Navier-Stokes equation
Hsia et al 1983 [18] £ Experimental data fitting
' 1+6K, + 6K’
Fukui et al. 1988 [19] D B N Boltzmann equation
60(D) ~ = 2K,

: 07p , :
Seidel et al. 1993 [6] A Experimemtal data fitting
. H A 2
Mitsuya 1993 [20] 2 Navier-Stokes equation

- § 2
1+ 6(—-)1{" +—=K;
o 3
Veijola et al. 1995 [8] Wy Approximation of Fukui's
’ " model
H : ;
C.-L Chen 1996 [21] 1+ 60K Navier-Stokes equation

* MS Thesis, J Young, Massachusetts Institute of Technology, 1998
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Vector Diagram — Force and

Displacement*
F=[PdA Fs i€
F= || F || expli (wt-d)) : /
Fs= || F|| cos(s)
Fd= || F || sin()
Ksg=Fs/6h
Csg=Fs/6h/ w F

* Slide courtesy S Patra



Discussion — Analytical

op  ,OH
We have VIP - o2 = 2=
ot ot
/ s <[ . ~| 9P o*P . . . _
P = Zﬂmnﬁf’mn(;r: y)T(ﬂ — v%[__‘r'P_ wP = X2 + vz ioP = iodi)

Tt T

P = Pe™t

Forlowo |icP

« Isnegligible resulting in differential pressure to be small and out of phase 90°
with displacement

For higho |icP

* Is dominant term and pressure profile approximately matches displacement
profile and pressure profile is +- 180° out of phase with displacement
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