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Chapter 4 

Shape Functions 

 
In the finite element method, continuous models are approximated using information at a finite 

number of discrete locations. Dividing the structure into discrete elements is called discretization. 

Interpolation within the elements is achieved through shape functions, which is the topic of this 

chapter.  

 

4.1 Linear shape functions for bar elements 

Let us isolate a bar element from the continuous bar. The deformations at the ends of the elements 

(called “nodes”) are part of the unknowns in the finite element analysis problem. Let us now 

define shape functions for the bar element in order to linearly interpolate deformation within the 

element. We will define the shape functions in such a way that they can be used for an element of 

any size. That is, we will normalize the length of the element by using a new local coordinate 

system shown below.  
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Figure 1 Local coordinate system for a finite bar element 

 

 The ξ-coordinate system is defined in such a way that ξ = -1 to 1 would cover the entire 

element irrespective of what x1 and x2 are for a given element. The following relationship gives 

that range for ξ as x varies from x1 to x2. 
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Now we define two shape functions in the ξ-coordinate system shown below. 

 
2

1)(and
2

1)( 21
ξξξξ +

=
−

= NN       (2) 

ξ-1 1

0.5

1

ξ-1 1

0.5

1

N1 N2

 

Figure 2 Linear shape functions for a bar element 

 

Using these shape functions, the deformations within the element are interpolated as follows: 

 2211 qNqNu +=         (3) 

where q1 and q2 are the deformations at the ends (nodes) of the element. It is easy to see that u 

varies linearly as shown in Figure 3. 
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Figure 3 Linear interpolation for u in a bar element 

 

Equation (3) can be written in matrix notation as 
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The interpolation contained in Equation (4) is the fundamental basis for the piece-wise 

continuous function-based local approximation in FEM. Once the shape functions are chosen, the 

rest of the procedure is routine, as we will see again and again in this notes. The shape functions 

used here are called Lagrangian interpolating functions. Several types of shape functions can be 
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chosen. For instance, we could have chosen quadratic or cubic interpolating functions. The choice 

of shape functions determines the type of the finite element. 

 

 Let us proceed further to write stresses and strains for the element. We need to do this in 

order to write the PE and WP of the element. We know that the strain in a bar element is given by 
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Since u is a function of N’s and N’s which are functions of ξ1, and ξ2, which are in turn functions 

of x, we need to use chain-rule differentiation: 
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From equations (4) and (1), 
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Therefore,  
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Since eLxx =− )( 12 , the length of the element, strain in Equation (8) can be re-written in a 

convenient normalized matrix form as 
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where 
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is called the strain displacement matrix for a bar finite element.  

 

Stress is then given by 

 εσ E=          (11) 

This can also be written in a general matrix form as 

 DBqσ =          (12) 
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where D is the stress-strain matrix. In the case of the bar element, it is simply the Young’s 

modulus E. In general it will be a matrix. We will come to that later in Chapter 8. What is 

important to note at this point is that the Equations (4), (9), and (12) are of the general matrix 

form, and are applicable even for a 3-D solid finite element. Thus, even though the shape 

functions are discussed only for the bar element here, the procedure is identical for any type of 

element. 

 

 To reinforce our understanding, let us repeat the above exercise for quadratic 

interpolating shape functions. Once again, these are Lagrangian type interpolating functions. 

4.2 Quadratic shape functions for bar elements 

Consider 
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Figure 4 Quadratic shape functions 

 

 We need a third mid-side node now in addition to the two end nodes. Thus, our element 

is composed of three nodes with deformations q1, q2, and q3. As can be seen, The first shape 

function is 1 at the left side node and zero at the other two nodes. The second shape function is 

zero at either end, but is 1 at the mid point.. The shape function 3 also has the same property in 

that it is one at the right node and zero at the left and mid-side nodes. This is in fact the property 

using which we can easily construct Lagrangian interpolation functions of any order (say, cubic, 

quartic, etc.). 
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By virtue of the property of shapefunctions, when u is constructed as shown below 

(Equation (14)), q1, q2, and q3 will be precisely satisfied at the three nodes. The interpolated 

deformation within the element is given by 
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Figure 5 The three nodes of a quadratic bar element 

 
Figure 6 Quadratically interpolated u using the quadratic shape functions for 

 q1=2, q2=-1, q3=3 

 

As done before, the strain is computed using the chain rule (Equation (6)), and the strain 

displacement matrix is obtained as 
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The matrix D is still only the scalar E as we are still dealing with the bar element.  
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 We will consider other shape functions for beam and plane stress elements later on. Our 

immediate concern is to use the shape functions and formulate the finite element model for the 

bar elements. That is the focus of Chapter 5. 

 


