
 Ananthasuresh, IISc

Chapter 7

Finite Element Formulations for Beams and Frames

Beams and frames can take axial, transverse (i.e., perpendicular to the axis), and moment loads. Unlike

truss elements, they undergo bending. In this chapter, we will obtain element stiffness matrix and force

vectors for a beam element by following the same procedure as the one used for the axially loaded bars.

This will reinforce our understanding of the finite element formulation so that we can discuss the general

procedure for any type of element in the coming chapters.

 We will first obtain an expression for the strain energy and work potential of a beam. Then, by

assuming shape functions of certain form, we will write the strain energy for a beam element in order to

obtain the stiffness matrix and force vectors for the element.

7.1 The bending strain energy for a beam

For a beam of length L, we write the strain energy density (= half of the product of stress and strain), and

then integrate it over the entire volume to get SE of the beam.

 ()() () dVstress
E

dVstrainstressSE
VV

2

2
1

2
1

∫∫ == (1a)

dV
I

My
EV

2

2
1

∫ ⎟
⎠
⎞

⎜
⎝
⎛= (1b)

dxdAy
EI
M

L A
∫ ∫ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

2

2

2
 (1c)

Equation (1b) is obtained by using the fact that the bending stress in a beam is given by

I

Mystress = (2)

Next, we evaluate the area integral in Equation (1c).

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∫∫ EI

MI
EI
MdAy

EI
MdAy

EI
M

AA 2222

2

2

2
2

2

2
2

2

2

 (3)

 7.2

In Equation (3) above, we noticed that IdAy
A

=∫ 2 is nothing but the area moment of inertia of the beam

cross-section. Next we use Bernoulli’s beam deflection theorem that states that the bending moment is

proportional to the curvature. Since for small strains, the curvature is given by the second derivative of

the transverse deflection v(x) of the neutral axis, we write:

 2

2

dx
vdEIM = (4)

 Substitution of Equation (3) into Equation (1c) and using (4) yields

 dx
EI

MSE
L
∫= 2

2

 (5a)

 dx
dx

vdEIdx
dx

vdEI
EI LL

2

2

22

2

2

22
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∫∫ (5b)

The importance of Equation (5b) lies in the fact that if we know the transverse deflection v(x), we can

compute the bending strain energy by evaluating the integral⎯an essential feature for the finite element

formulation.

7.2 Shape functions for beam elements

The first step in the finite element formulation is to choose the suitable shape functions. We will consider

two-noded beam elements. Each node will have three degrees of freedom, viz. axial and transverse

displacements, and the slope. We will first consider only the transverse displacement and the slope, and

we include consider the axial displacement later. We do this because, in bar elements we already

accounted for the axial displacement. It will be a simple matter to include this effect later, as you will see

at the end of this chapter.

x1

x2

ξ=-1 ξ=1ξ

q1q2
q3q4

Figure 1 The four degrees of freedom of a beam element in local coordinate system

 7.3

 The degrees of freedom q1, q2, q3, and q4 are shown in the local ξ -coordinate system in Figure 1.

Recall that the purpose of using a local coordinate system is to make the derivation general so that the

formulation is applicable to all elements of different sizes and orientations. Recall also the transformation

from the local to the global system:

 () 12
1 −−= xx

Le

ξ (6)

We will now define four shape functions Ni (i = 1,2,3, and 4) such that v(x) and
dx

xdv)(
give the transverse

displacement and the slope of the beam respectively.

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧=

4

3

2

1

4321 22
)(

q
q
q
q

N
L

NN
L

Nv eeξ (7)

where

() ()

() ()

() ()

() ()11
4
1

21
4
1

11
4
1

21
4
1

2
4

2
3

2
2

2
1

−+=

−+=

+−=

+−=

ξξ

ξξ

ξξ

ξξ

N

N

N

N

 (8)

Note that

dx
d

d
dv

dx
dv ξ

ξ
ξ)(

= (9)

where

eLdx
d 2

=
ξ

 (10)

and

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

=

4

3

2

1

4321

22
q
q
q
q

d
dN

d
dNL

d
dNL

d
dN

d
dv ee

ξξξξξ
 (11a)

Displacement at node 1

Slope at node 1

Displacement at node 2

Slope at node 2

 7.4

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

=

4

3

2

1

2
4

2

2
3

2

2
2

2

2
1

2

2

2

22
q
q
q
q

d
Nd

d
NdL

d
NdL

d
Nd

d
vd ee

ξξξξξ
 (11b)

-1 0 1

0

0.5

1

N1

-1 0 1

-0.5

0

0.5

N2

-1 0 1

0

0.5

1

N3

-1 0 1

-0.5

0

0.5

N4

Figure 2 Plots of beam shape functions

We should pause a little here to think about why the shape functions are defined this way. Study

Figure 2 carefully where the four shape functions are shown graphically. Note that N1 has zero slope at

the beginning and end, and zero value at the end. Likewise, N2 has zero values at beginning and the end,

and zero slope at the end. Just as N1 has unit displacement at the beginning, N2 has unit slope (angle =

45°). N3 and N4 exhibit similar features. i.e., i th shape function is zero at all other dofs and unity at i th

dof. Recall from our discussion of shape functions for the bar element. There, the two shape functions

were defined such that each shape function is unity only at one at one end and zero at the other. This is to

ensure that the interpolating shape functions satisfy the deformations at the ends. Here also, all the four

 7.5

end conditions q1, q2, q3, and q4 are satisfied, as can be seen in plots in Figure 2. Notice that each shape

function is unity at its corresponding degree of freedom while it is zero at the other degrees of freedom. If

you understand this property, you can easily sketch the shape functions without looking at their

expressions. Please also note that you can also easily derive them then. Let us demonstrate that with the

first shape function.

 Shape function)(1 ξN must satisfy four conditions:

0)1(

0)1(

0)1(

1)1(

1

1

1

1

==

==

=−=

=−=

ξ
ξ

ξ

ξ
ξ

ξ

d
dN
N
d
dN
N

 (12)

A polynomial curve that satisfies four conditions must be a cubic at the minimum. So, let us take)(1 ξN

to be a cubic in ξ .

 3
3

2
2101)(ξξξξ aaaaN +++= (13a)

Then,

 2
321

1 32
)(

ξξ
ξ
ξ

aaa
d

dN
++= (13b)

Conditions in Equation (12) when substituted into Equation (13a) and (13b) give:

032
1

032
1

321

3210

321

3210

=++
=+++

=+−
=−+−

aaa
aaaa

aaa
aaaa

 (14)

Solving for 3210 and,,, aaaa in Equation (14) yields

 4/1and,0,4/3,5.0 3210 ==−== aaaa

That means

 ()33
1 32

4
1

4
1

4
35.0 ξξξξ +−=+−=N (15)

 7.6

You can easily verify that the first shape function in Equation (8a) is the same as the one in Equation (15)

because ()32 32
4
1)2()1(

4
1 ξξξξ +−=+− .

 It is important to notice also that the shape functions N2 and N4 are multiplied by
Le

2
. This is

because these two shape functions multiply with slope coordinates which have radians as units. So, this is

necessary in order to be consistent with units in Equation (7). Another reason becomes apparent from

Equations (10) and (11) if you think about the slope being equal to unity at those degrees of freedom.

There is a name to the four shape functions that we just used. They are called Hermite

polynomials. Recall that the shape functions used for bar elements were called Lagrange polynomials.

While Lagrange polynomials satisfy only the C0 continuity (i.e., only the position continuity), Hermite

polynomials satisfy C1 continuity (i.e., the slope is also continuous). In beam elements, since the slope is

one degree of freedom, we need slope continuity.

7.3 Element stiffness matrix for beam elements

As shown in Equation (5b), the strain energy of a beam element is given by

 dx
dx

vdEISE
x

x
e ∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

2

1

2

2

2

2
1

 (16)

Using the shape functions and the ξ -coordinate system presented above,

ξ

ξ

ξ
ξ

ξ

ξ
ξ

ξ

d
dx

vd
L
EI

d
L

Ldx
vdEI

d
d
dx

dx
d

dx
vdEI

d
d
dx

dx
d

dx
vdEISE

e

e

e

e

∫

∫

∫

∫

−

−

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

1

1

2

2

2

3

1

1

42

2

2

1

1

42

2

2

1

1

22

2

2

8
2
1

2
2

2

2

2

 (17)

where 2

2

dx
vd

 is given in Equation (11b). To evaluate

2

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dx

vd
, we will use the matrix notation instead of

doing that tediously by expanding Equation (11b). Because squaring a matrix entity is equivalent to

multiplying its transpose with itself,

 7.7

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

×

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

4

3

2

1

2
4

2

2
3

2

2
2

2

2
1

2

4

3

2

1

2
4

2

2
3

2

2
2

2

2
1

2

2

2

2

22

2

2

22

22

q
q
q
q

d
NdL

d
Nd

d
NdL

d
Nd

q
q
q
q

d
NdL

d
Nd

d
NdL

d
Nd

dx
vd

dx
vd

dx
vd

ee

T

ee
T

ξξξξ

ξξξξ

 (18)

The substitution of Equation (18) into Equation (16), and some simplification yields

qq

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ +

−−
−

+

−−−−−

−
−−⎟

⎠
⎞

⎜
⎝
⎛ −

−

+−−

= ∫
−

1

1

2
2

2
2

22

2
2

2
2

22

4
13)13(

8
3

16
19)13(

8
3

)13(
8
3

4
9)13(

8
3

4
9

16
19)13(

8
3

4
13)13(

8
3

)13(
8
3

4
9)13(

8
3

4
9

2
1 ξ

ξξξξξξ

ξξξξξξ

ξξξξξξ

ξξξξξξ

d

LLLL

LL

LLLL

LL

SE

eeee

ee

eeee

ee

T
e

(19)

Note that the integration on ξ applies to each term in the 4 x 4 matrix above. Note also that

 ∫
−

=
1

1

2ξd ∫
−

=
1

1

0ξξ d ∫
−

=
1

1

2

3
2ξξ d (20)

Upon integration, Equation (19) gives

 qq

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

−
−

=

22

22

3

4626
612612

2646
612612

2
1

eeee

ee

eeee

ee

e

T
e

LLLL
LL

LLLL
LL

L
EISE (21)

from which we infer that the element stiffness matrix is given by

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

−
−

=

22

22

3

4626
612612

2646
612612

eeee

ee

eeee

ee

e
e

LLLL
LL

LLLL
LL

L
EIK (22)

 7.8

 If we also account for axial deformations, and consider a beam with six degrees of freedom as

shown in Figure 3, we get the beam element in the local ξ -coordinate system. We denote this with

“prime” because it is in the local coordinate system. The element stiffness matrix for this case is given by

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−−

−

−

−

−

=′

eeee

eeee

e

ee

e

ee

eeee

eeee

e

ee

e

ee

e

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EA

L
EA

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EA

L
EA

460260

61206120

0000

260460

61206120

0000

22

2323

22

2323

K (23)

q2q3
q5q6

q1 q4

Figure 3 The six degree-of-freedom beam element

Note how we combined the 2 x 2 matrix of the axial stiffness

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

e

ee

e

ee

e

ee

e

ee

L
EA

L
EA

L
EA

L
EA

, with the 4 x 4

bending stiffness of Equation (23), into a general 6 x 6 matrix in Equation (23). It simply means that

q K qT
e will give the sum of axial and bending energies.

 In general, an element of a curved beam can be in any orientation. So, we need to derive the

transformation matrix L, as we did in the case of trusses. Refer to Figure 4 and Equation (24) below.

 7.9

q2

q3=q'3

q5

q6=q'6

q1

q4

q'1
q'2

q'4

q'5

Slope of the element = θ

Figure 4 Arbitrarily oriented beam element

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

1

1

1

1

1

1

1

1

1

1

1

1

100000
0000
0000
000100
0000
0000

'
'
'
'
'
'

q
q
q
q
q
q

lm
ml

lm
ml

q
q
q
q
q
q

 (24)

Now, the stiffness matrix for a six degree-of-freedom beam element is:

 LKLK e
T

e ′= (21)

This follows from the strain-energy argument that

 LqKLqqKq e
TT

e
T

eSE ′=′=
2
1

2
1

 (22)

7.4 Element force vector for beam elements

The general procedure for deriving the element force vectors was described in Section 5.2 in the context

of bar elements. We will repeat the same here briefly for beam elements with body force f per unit length.

As in Equation (7) of Chapter 5, we write the work potential due f on the element as

 qf T
e

ee

L

e
e

q
q
q
q

dN
L

NN
L

N
fL

dxxvfWP =

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧== ∫∫

−

4

3

2

1
1

1
4321 222

)(ξ (23)

After performing the integration in matrix form, we get

 7.10

⎭
⎬
⎫

⎩
⎨
⎧

−=
122122

22
eeee

e
fLfLfLfL

f (24)

The force vector due to the distributed surface (or line) force is done in a similar manner. The point forces

and moments are directly included in the global system force vector. It is then necessary to create nodes at

all the locations that have point forces.

7.5 Solving beam FEM problems

The assembly of the global system, imposing the boundary conditions, and all the post-processing

operations are exactly the same as we did for the trusses. Now, we realize the procedure we followed in

the previous chapters is general enough to apply to other types of elements. The only thing that is

different about different elements are the shape functions and the stress-strain and strain energy

relationships. We will discuss the stress-strain relationships in Chapter 8. In the remaining section of this

chapter, we will present the Matlab script for beam FEM problems. Study this script carefully and note

the similarities (and some differences) between this script and the one for truss elements.

7.6 Matlab script for beam FEM

Four input files are needed for beam.m. These files contain the geometric, physical and materiel property,

and force information about the truss to be analyzed.

1) node.dat

 7.11

This file contains the (X,Y) coordinates of all the node numbers in the following format.

Node# X-coordinate Y-Coordinate

1
2
3
etc.

2) elem.dat

This file contains the element information pertaining to the two nodes that form the element, the cross-

section area and Young’s modulus of the element.

Element# Node#1 Node#2 Area Young’s modulus Inertia
1
2
3
etc.

3) forces.dat

This file contains the nodal forces to be applied on the truss. You need to specify the node number, the

degree-of-freedom (dof) number (1 if force is in the X-direction, and 2 if the force is in the Y-direction),

and the value of the force. If you have forces in the X and Y directions at the same node, then you need to

put in two lines in the force, one for each direction.

Serial# Node# dof# Force value
1
2
etc.

4) disp.dat

This file contains the information about the displacement boundary conditions, i.e. which nodes and dof’s

are fixed to be zero. dof# is to be treated in the same way as you do in the case of force specification.

Serial# Node# dof#
1
2
etc.

Matlab Scripts for beam FEM

 7.12

----------start of fembeam.m-----------
%%%
% Finite Element MATLAB script for
% deflection and stress analysis of beams
% Written by: G.K. Ananthasuresh
% for MEAM 310 class in Spring 1997.
%%
 clg % Clear graphics window
 clear all % Clear all variables
 clc % Clear command window
 hold off % No hold on the graphics window
%
% This script needs the following scripts to run
% matcut.m --> trims a matrix
% veccut.m --> trims a vector
% femtruss.m --> FEA for trusses
% It also needs the following input files
% node.dat --> nodal data
% elem.dat --> element data
% forces.dat --> force data
% disp.dat --> displacement boundary condition data
%
%%%
% READ INPUT from files
%%%
%
% Read in nodal and element connectivity data from
% files: nodes.dat and elem.dat
load node.dat
load elem.dat
%
% Read in force data from the file forces.dat
load forces.dat
% Read in displacement boundary condition data from the file disp.dat
load dispbc.dat
%
%%
% PRE-PROCESSING
%%
% Identify the number of nodes, X and Y Coordinates of the nodes
NNODE = size(node,1);
nx = node(:,2);
ny = node(:,3);
%
% Identify the number of elements and form an element connectivity
array,
% the cross-section and Young's modulus arrays.
NELEM = size(elem,1);
ncon = elem(:,[2 3]);
A = elem(:,4);
E = elem(:,5);
Inertia=elem(:,6);

 7.13

%
% Arrange force information into a force vector, F
F = zeros(3*NNODE,1); % Initialization
Nforce = size(forces,1);
for i = 1:Nforce,
 dof = (forces(i,2)-1)*3 + forces(i,3);
 F(dof) = forces(i,4);
end
%
% Displacement boundary conditions
Nfix = size(dispbc,1);
j = 0;
for i = 1:Nfix,
 j = j + 1; dispID(j) = (dispbc(i,2)-1)*3+dispbc(i,3);
end
dispID = sort(dispID);
%
% Compute the lengths of the elements
for ie=1:NELEM,
 eye = ncon(ie,1);
 jay = ncon(ie,2);
 L(ie) = sqrt ((nx(jay) - nx(eye))^2 + (ny(jay) - ny(eye))^2);
end
%
%
%%
% SOLUTION
%%
% Call fembeam.m to solve for the following.
% Deflections: U
% Reaction forces at the constrained nodes: R
% Internal forces in each truss member: Fint
% Global stiffness matrix: Kglobal
% Strain energy: SE
fembeam(A,L,E,nx,ny,ncon,NELEM,NNODE,F,dispID,Inertia);
%
%
%%
% POST-PROCESSING
%%
% Plotting
clg

for ip=1:NELEM,
 pt1 = ncon(ip,1); pt2 = ncon(ip,2);
 dx1 = U(3*(pt1-1)+1);
 dy1 = U(3*(pt1-1)+2);
 dx2 = U(3*(pt2-1)+1);
 dy2 = U(3*(pt2-1)+2);
%
 plot([nx(pt1) nx(pt2)], [ny(pt1) ny(pt2)],'--c');
 hold on

 7.14

 plot([nx(pt1) nx(pt2)], [ny(pt1) ny(pt2)],'.w');
 plot([nx(pt1)+dx1 nx(pt2)+dx2], [ny(pt1)+dy1 ny(pt2)+dy2],'-y');
 plot([nx(pt1)+dx1 nx(pt2)+dx2], [ny(pt1)+dy1 ny(pt2)+dy2],'.w');
 hold on

end
xlabel('X');
ylabel('Y');
axis('equal');
----------end of beam.m-----------

----------start of mcut.m-----------
function D = mcut(C,i)
% To remove ith row and ith column from C (size: NxN) and
% return D (size: N-1xN-1)
[m,n] = size(C);
d1 = C(1:i-1,1:i-1);
d2 = C(1:i-1,i+1:n);
d3 = C(i+1:m,1:i-1);
d4 = C(i+1:m,i+1:n);
D = [d1 d2; d3 d4];
----------end of mcut.m-----------

----------start of veccut.m-----------
function D = veccut(C,i)
% To remove member i from C and return D with size 1 less.
[m,n] = size(C);
if m == 1
 d1 = C(1:i-1);
 d2 = C(i+1:n);
 D = [d1 d2];
end
if n == 1
 d1 = C(1:i-1);
 d2 = C(i+1:m);
 D = [d1; d2];
end
----------end of veccut.m-----------

----------start of fembeam.m-----------

%%
% This m-file forms the finite element model of a beam
% system and solves it.
% G.K. Ananthasuresh for MEAM 310 class in Spring 1997.
% Inputs:
% Ae --> A vector containing the cross-section areas of all
% the elements
% Le --> A vector containing the lengths of all the elements
% Ee --> A vector containing the Young's moduli of all the
% elements

 7.15

% nx --> A vector containing the X-coordinates of all
% the nodes
% ny --> A vector containing the Y-coordinates of all
% the nodes
% ncon --> A matrix containing the nodal-connectivity of all
% the elements
% F --> A vector containing the applied external forces
% dispID--> A vector containing the displacement boundary
% condition information
% Inertia-->A vector containing the Inertia of all the elements
%
% Outputs:
% u --> The displacements of all the dof
% Rdisp --> The reaction forces at the dof which are specified
% to be fixed
% King --> The global stiffness matrix before the application
% of the boundary conditions.
% SE --> The strain energy in the entire truss
%
function [u,Rdisp,P,Ksing,SE] = fembeam(Ae, Le, Ee, nx, ny, ncon,
NELEM, NNODE, F, dispID,Ine)

K = zeros(3*NNODE,3*NNODE); % Initialize global
stiffness matrix
k = zeros(6,6); % Initialize local
stiffness matrix

for ie=1:NELEM,
 eye = ncon(ie,1);
 jay = ncon(ie,2);

% Form the transformation matrix, Lambda.
 L = Le(ie);
 A = Ae(ie);
 E = Ee(ie);
 In= Ine(ie);
 lox = (nx(jay)-nx(eye))/L; mox = (ny(jay)-ny(eye))/L;
 loy = -mox; moy = lox;
 Lambda = [lox mox 0 0 0 0 ; ...
 -mox lox 0 0 0 0 ; ...
 0 0 1 0 0 0 ; ...
 0 0 0 lox mox 0 ; ...
 0 0 0 -mox lox 0 ; ...
 0 0 0 0 0 1];
% Form local element matrix
 k(1,1)=E*A/L; k(1,4)=-k(1,1);
 k(2,2)=12*E*In/(L^3); k(2,3)=6*E*In/(L^2);
 k(2,5)=-k(2,2); k(2,6)=k(2,3);
 k(3,2)=k(2,3); k(3,3)=4*E*In/L;
 k(3,5)=-k(2,3); k(3,6)=2*E*In/L;
 k(4,1)=-k(1,1); k(4,4)=k(1,1);
 k(5,2)=-k(2,2); k(5,3)=-k(2,3);

 7.16

 k(5,5)=k(2,2); k(5,6)=-k(2,3);
 k(6,2)=k(2,3); k(6,3)=k(3,6);
 k(6,5)=-k(2,3); k(6,6)=k(3,3);

 klocal = Lambda' * k * Lambda;

% Form ID matrix to assemble klocal into the global stiffness matrix,
K.
 id1 = 3*(eye-1) + 1;
 id2 = id1 + 1;
 id3 = id2 + 1;
 id4 = 3*(jay-1) + 1;
 id5 = id4 + 1;
 id6 = id5 + 1;

 K(id1,id1) = K(id1,id1) + klocal(1,1);
 K(id1,id2) = K(id1,id2) + klocal(1,2);
 K(id1,id3) = K(id1,id3) + klocal(1,3);
 K(id1,id4) = K(id1,id4) + klocal(1,4);
 K(id1,id5) = K(id1,id5) + klocal(1,5);
 K(id1,id6) = K(id1,id6) + klocal(1,6);

 K(id2,id1) = K(id2,id1) + klocal(2,1);
 K(id2,id2) = K(id2,id2) + klocal(2,2);
 K(id2,id3) = K(id2,id3) + klocal(2,3);
 K(id2,id4) = K(id2,id4) + klocal(2,4);
 K(id2,id5) = K(id2,id5) + klocal(2,5);
 K(id2,id6) = K(id2,id6) + klocal(2,6);

 K(id3,id1) = K(id3,id1) + klocal(3,1);
 K(id3,id2) = K(id3,id2) + klocal(3,2);
 K(id3,id3) = K(id3,id3) + klocal(3,3);
 K(id3,id4) = K(id3,id4) + klocal(3,4);
 K(id3,id5) = K(id3,id5) + klocal(3,5);
 K(id3,id6) = K(id3,id6) + klocal(3,6);

 K(id4,id1) = K(id4,id1) + klocal(4,1);
 K(id4,id2) = K(id4,id2) + klocal(4,2);
 K(id4,id3) = K(id4,id3) + klocal(4,3);
 K(id4,id4) = K(id4,id4) + klocal(4,4);
 K(id4,id5) = K(id4,id5) + klocal(4,5);
 K(id4,id6) = K(id4,id6) + klocal(4,6);

 K(id5,id1) = K(id5,id1) + klocal(5,1);
 K(id5,id2) = K(id5,id2) + klocal(5,2);
 K(id5,id3) = K(id5,id3) + klocal(5,3);
 K(id5,id4) = K(id5,id4) + klocal(5,4);
 K(id5,id5) = K(id5,id5) + klocal(5,5);
 K(id5,id6) = K(id5,id6) + klocal(5,6);

 K(id6,id1) = K(id6,id1) + klocal(6,1);

 7.17

 K(id6,id2) = K(id6,id2) + klocal(6,2);
 K(id6,id3) = K(id6,id3) + klocal(6,3);
 K(id6,id4) = K(id6,id4) + klocal(6,4);
 K(id6,id5) = K(id6,id5) + klocal(6,5);
 K(id6,id6) = K(id6,id6) + klocal(6,6);
end

% Store unaltered K as Ksing before applying the boundary conditions.
 Ksing = K;

%det(K)
%inv(K);
%pause

% Imposing displacement boundary conditions
% --
% dispID array contains the dof which are assigned zero values.
[sm,sn] = size(dispID);
Ndbc = sn;
for nd=1:Ndbc,
 K = matcut(K,dispID(nd)-nd+1);
 F = veccut(F,dispID(nd)-nd+1);
end

% To solve for unknown displacements.
U = inv(K)*F;
SE = .5*U'*K*U;

% Results
% ---------------
% "u" for all nodes (including those where values were specified)
u = zeros(3*NNODE,1);

for iu=1:Ndbc,
 u(dispID(iu)) = 12345.12345;
end

iuc = 0;
for iu=1:3*NNODE,
 if u(iu) == 12345.12345
 iuc = iuc+1;
 else
 u(iu) = U(iu-iuc);
 end
end

for iu=1:Ndbc,
 u(dispID(iu)) = 0;
end

dx = zeros(1,NNODE);
dy = zeros(1,NNODE);

 7.18

for iu=1:NNODE,
 dx(iu) = u(3*(iu-1)+1);
 dy(iu) = u(3*(iu-1)+2);
end

%--
% Computation of reactions at constrained nodes
%--
R = Ksing*u;
Rdisp = zeros(1,Ndbc);
for iu=1:Ndbc,
 Rdisp(iu) = R(dispID(iu));
end

%---
% Computation of internal reaction forces
% and storing in P(NNODE,4)
%---
%M = zeros(NNODE,1);

for ie=1:NELEM,

 eye = ncon(ie,1);
 jay = ncon(ie,2);

% Form the transformation matrix, Lambda.
 L = Le(ie); A = Ae(ie);
 lox = (nx(jay)-nx(eye))/L; mox = (ny(jay)-ny(eye))/L;
 loy = -mox; moy = lox;
 Lambda = [lox mox 0 0 0 0 ; ...
 -mox lox 0 0 0 0 ; ...
 0 0 1 0 0 0 ; ...
 0 0 0 lox mox 0 ; ...
 0 0 0 -mox lox 0 ; ...
 0 0 0 0 0 1];
% Form local element matrix
 k(1,1)=E*A/L; k(1,4)=-k(1,1);
 k(2,2)=12*E*In/(L^3); k(2,3)=6*E*In/(L^2);
 k(2,5)=-k(2,2); k(2,6)=k(2,3);
 k(3,2)=k(2,2); k(3,3)=4*E*In/L;
 k(3,5)=-k(2,3); k(3,6)=2*E*In/L;
 k(4,1)=-k(1,1); k(4,4)=k(1,1);
 k(5,2)=-k(2,2); k(5,3)=-k(2,3);
 k(5,5)=k(2,2); k(5,6)=-k(2,3);
 k(6,2)=k(2,3); k(6,3)=k(3,6);
 k(6,5)=-k(2,3); k(6,6)=k(3,3);

 klocal = Lambda' * k * Lambda;

 7.19

% Form ID matrix to identify respective displacements.
 id1 = 3*(eye-1) + 1;
 id2 = id1 + 1;
 id3 = id2 + 1;
 id4 = 3*(jay-1) +1;
 id5 = id4 + 1;
 id6 = id5 + 1;

 ulocal = [u(id1) u(id2) u(id3) u(id4) u(id5) u(id6)];

 Rint = klocal*ulocal';

 P(ie,1) = Rint(1);
 P(ie,2) = Rint(2);
 P(ie,3) = Rint(3);
 P(ie,4) = Rint(4);
 P(ie,5) = Rint(5);
 P(ie,6) = Rint(6);

 nxd1 = nx(eye) + u(id1);
 nyd1 = ny(eye) + u(id2);
 nxd2 = nx(jay) + u(id4);
 nyd2 = ny(jay) + u(id5);

 Ld = sqrt((nxd2-nxd1)^2 + (nyd2-nyd1)^2);
 if Ld > L P(ie,5) = 1; else P(ie,5) = -1; end
 if Ld==L P(ie,5) = 0; end
end

----------end of fembeam.m-----------

 7.20

Exercise 7.3
For the curved beam example, input files are provided below to solve it using the Matlab FEM script.

Verify that the vertical deflection at the point of load application is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
EI
FL3

192
13

.

L

L/4

F

Figure 5 A curved beam example

Data files:

node.dat

1 0 0

2 0 1

3 0 2

4 0 3

5 0 4

6 0 5

7 0 6

8 0 7

9 0 8

10 0 9

11 0 10

 7.21

12 0 11

13 0 12

14 0 13

15 0 14

16 0 15

17 0 16

18 0 17

19 0 18

20 0 19

21 0 20

22 0.25 20

23 0.5 20

24 0.75 20

25 1.00 20

26 1.25 20

27 0.5 20

28 1.75 20

29 2.00 20

30 2.25 20

31 2.5 20

32 2.75 20

33 3.00 20

34 3.25 20

35 3.5 20

36 3.75 20

37 4.00 20

38 4.25 20

39 4.5 20

40 4.75 20

41 5.00 20

elem.dat

1 1 2 .05 1e7 1.95e-4

2 2 3 .05 1e7 1.95e-4

 7.22

3 3 4 .05 1e7 1.95e-4

4 4 5 .05 1e7 1.95e-4

5 5 6 .05 1e7 1.95e-4

6 6 7 .05 1e7 1.95e-4

7 7 8 .05 1e7 1.95e-4

8 8 9 .05 1e7 1.95e-4

9 9 10 .05 1e7 1.95e-4

10 10 11 .05 1e7 1.95e-4

11 11 12 .05 1e7 1.95e-4

12 12 13 .05 1e7 1.95e-4

13 13 14 .05 1e7 1.95e-4

14 14 15 .05 1e7 1.95e-4

15 15 16 .05 1e7 1.95e-4

16 16 17 .05 1e7 1.95e-4

17 17 18 .05 1e7 1.95e-4

18 18 19 .05 1e7 1.95e-4

19 19 20 .05 1e7 1.95e-4

20 20 21 .05 1e7 1.95e-4

21 21 22 .05 1e7 1.95e-4

22 22 23 .05 1e7 1.95e-4

23 23 24 .05 1e7 1.95e-4

24 24 25 .05 1e7 1.95e-4

25 25 26 .05 1e7 1.95e-4

26 26 27 .05 1e7 1.95e-4

27 27 28 .05 1e7 1.95e-4

28 28 29 .05 1e7 1.95e-4

29 29 30 .05 1e7 1.95e-4

30 30 31 .05 1e7 1.95e-4

31 31 32 .05 1e7 1.95e-4

32 32 33 .05 1e7 1.95e-4

33 33 34 .05 1e7 1.95e-4

34 34 35 .05 1e7 1.95e-4

35 35 36 .05 1e7 1.95e-4

36 36 37 .05 1e7 1.95e-4

 7.23

37 37 38 .05 1e7 1.95e-4

38 38 39 .05 1e7 1.95e-4

39 39 40 .05 1e7 1.95e-4

40 40 41 .05 1e7 1.95e-4

forces.dat

1 41 2 -2

disp.dat

1 1 1

2 1 2

3 1 3

Exercise 7.4

The design of a garment hanger is not a big deal. But, it is a good curved-beam problem and plastic

garment hangers do fail occasionally. Using the dimensions shown in Figure 6 and assuming that point A

has a pin-support, Consider the two load cases marked (a) and (b) in the figure. Assume that the hanger is

made out of tubular plastic with 3 mm ID and 7 mm OD. Assume appropriate values for all other data you

need. perform the deflection analysis of the hanger using the Matlab FEM script.

 7.24

(a) (b)

-200 -150 -100 -50 0 50 100 150 200

-100

-50

0

50

100

150

200

A

B

C D

E

P

A = (0, 120) B = (-180, 37.59) C = (-180, 0)
D = (180, 0) E = (180, 37.59) P = (-173.16, 18.79)

(All dimensions are in mm)

q N/m

q N/m

q N/m

 Figure 6 Approximate dimensions for a garment hanger

Exercise 7.5

Modify the Matlab FEM script for beams to compute the stresses. And then use the modified script to
estimate stresses in the hanger described in Example 7.2

Exercise 7.6

Derive the shape functions for a higher order beam element that has a mid-side node at 0=ξ in addition

to the nodes at 1−=ξ and 1=ξ . Using those shape functions, construct the element stiffness matrix in
the local coordinate system of the beam element.

