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Practice problems #5 
 
Problem 1 

 

The above figure shows the suspension of the electrostatic comb-drive. Except the shaded gray 
region, the rest of the structure is free to move above the substrate separated by a gap.  
Obtain the linear stiffness of the suspension in the vertical direction (i.e., along the axis of 
symmetry shown in the figure) in terms of the length L, width w, and the Young's modulus E, 
and the layer thickness t. Obtain the expression for the maximum stress as well.  

Use E = 150 GPA, ν = 0.25, L = 200 um, w = 5 um, and t = 3 um. 

 
A fixed-guided beam (length = l , width = b , depth = h ) with a transverse tip load of F  has the 
following formulae for maximum transverse deflection δ , and maximum axial stress σ : 
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So, the stiffness of one fixed-guided beam is, 3
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If we denote each fixed-guided beam as a spring of stiffness k , in the left half of the comb-drive 
suspension, there will be four such springs. They are to be arranged as shown in the figure 
below. This is because beams A and B (and also C and D) have the same force. So, they are 
springs in series. The A-B spring pair and C-D spring pair have the same displacement and hence 
are in parallel. Looking at the spring-schematic, we can observe that the stiffness of the left half 
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of the suspension is k  (note that A-B and C-D spring pairs each have 2/k , together they have 
2/2/ kkk += ). 

 
The left half and right half of the suspension are in parallel (since they have the same 
displacement). So, the total stiff of the suspension is ./0626.142 mNkkk ==+  
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By substituting for F  in terms of δ , we get 2

3
l
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Note that the δ  of one fixed-guided beam is half of the displacement of the central shuttle 

shuttleδ . That is, 
2
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So, maximum stress = 22
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If MPa900=σ  is the maximum permitted stress before failure occurs, the maximum permitted 
shuttle displacement is given by 
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Then, per beam, the maximum deflection is 16 mµ , which is well above the limit for which the 
linear deflection analysis is valid. So, this should be thought of as only an estimate for the 
maximum deflection. When a beam undergoes large deflections, geometrically nonlinear 
analysis needs to be done. A beam such as this will experience increased stiffness due to the 
axial stretching (recall that linear analysis assumes that the length of the beam along the neutral 
axis does not change). 
 
Problem 2 
Use a finite element analysis (FEA) software to check the validity of the above formula via linear 
FEA. (FEMLAB is used below with plane stress elements but you will be using a Matlab 
program that uses beam elements.) 
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A note about units 
In FEMLAB, we use micron units for all dimensions. That is, we are multiplying the length units 
by a factor of 610  when we enter into the FEMLAB program. This must be done with all 
quantities appropriately. For example, if we want to apply a force of 1 microN, we would enter 
into FEMLAB as 1 because we need to multiply by 610  as force has a dimension of [L] in it. On 
the same token, the Young’s modulus of 150E9 Pa should be entered as 150E3. Here, we 
multiplied by 610−  because Young’s modulus has [L-1] in it. Poisson’s ration, being 
dimensionless, is entered as is (i.e., 0.3). 
 
Likewise, when we read something out of FEMLAB, we should make sure that we multiply by 
the reverse factor. That is, if FEMLAB shows a stress of 1, it means that it is actually 610  Pa or 
1 MPa (note that stress has [L-1] in it  so, if we are reading out of FEMLAB, we should 
multiply by 610 ). 
 
Only the left half of the suspension is modeled in FEMLAB. This means that the symmetry 
boundary condition is imposed along the axis of symmetry by restricting only the x-displacement 
to zero. 
 
Using the default triangular mesh at first and then refining it three times, we get the maximum 
displacement and maximum stress as follows. 
 
 
 

 
 
 
 
 
 

F = 1E-6 N 



ME 237 Introduction to MEMS Jan.-Apr., 2005 
 

 4 Ananthasuresh, IISc 

Results with 1E-6 N applied as shown above. 
Mesh type )( mshuttle µδ  Stiffness = 

force/displacement = 
shuttleE δ/61 −  (N/m) 

maxσ (Mpa) 

Default triangular 0.0935 10.6952 1.68 
One level finer 0.129 7.7519 2.98 
One more level finer 0.144 6.9444 3.97 
One more level finer 0.149 6.7114 5.12 
 
We can see that the solution is converging with the refining of the mesh. The stiffness obtained 
with left half of the suspension can be taken as 6.7114 N/m. For comparison, consider that the 
analytical formula gave 7.0313 N/m. The difference can be attributed to the shear stresses that 
are ignored in the analytical calculation. Furthermore, the stress ( xσ ) below shows that the 
beams are not the only places where the stress is non-zero: the portions connected to the beams 
in the shuttle as well as the side rigid part also experience some stress.  
 

 
Stress plot with the point force applied. 
 
 
You can choose quad elements in “Specify Element…” option in FEMLAB if you use the 
Structural Mechanics Module 1.1. You can click on each subdomain and choose 4-node 
quadrilateral and “apply” it. For some subdomains, such a mesh is not possible. For those, keep 
the triangular mesh. The resultant mesh is shown below at the default level. 
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Results with 1E-6 N applied but with 4-node quadrilateral mesh 
Mesh type )( mshuttle µδ  Stiffness = 

force/displacement = 
shuttleE δ/61 −  (N/m) 

maxσ (Mpa) 

Default triangular 0.125 8.0000 2.73 
One level finer 0.143 6.9930 3.52 
One more level finer 0.149 6.7114 4.36 
One more level finer 0.150 6.6667 5.36 
 
Now, we see that convergence is faster with refinement. Quad elements are accurate even with 
one-level coarser mesh than with the triangular elements. 
 
 
Problem 3 
 
If the failure stress of the material (polysilicon) is 900 MPa, what is the maximum vertical 
deflection of the central mass before the failre state is reached? Once again, do a calculation and 
then verify with FEA results. 
 
We know from above that 32 mµ  is the maximum permissible shuttle displacement before 
failure stress is reached. This is based on linear analysis. Let us apply, 3.2 mµ  displacement 
boundary condition instead of the force. This can be done in the same place where we specify 
the forces. Just put in the displacement value for the upper-right corner of the shuttle. Then, we 
can see how close the maximum stress is to 90 Ma (900/10 = 90, because we applied only 3.2 

mµ  instead of 32 mµ ). 
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The stress ( xσ ) plot with 3.2 mµ  displacement applied. 
 
The maximum stress is 88.1 MPa with second-level finer mesh. It is 90 MPa according to the 
formula. With third-level finer mesh, it is 110 MPa.  
 

Disp. = 3.2 um 
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The stress at the sharp corners will be theoretically infinite. In FEM, it will keep increasing with 
mesh refinement. So, the corners should be rounded and care should be exercised in interpreting 
the maximum stress in the results of FEM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


