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Solution to homework #6 
 
 
Problem 5  
 
By denoting length of the magnetic path 
before any movement of the armature by 0mL , 
we can write for any z: 
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By writing the magnetic co-energy as 
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whose derivative with respect to z gives the negative of the force on the vertically moving 
armature. As the form of this equation is similar to that of the electrostatic force equation, 
the behavior of this system is the same as before. Therefore, pull-in occurs here also.  
 

Note also that MMF nI= . If we know the electrical circuit’s resistance, we can 
compute the current I  to be put into the above equation of co-energy in terms of the 
given DC voltage, V . 
 
Problem 6 
> restart; 
> Ces := epsilon0*A/(g0-x); Capacitance expression 
Voltage across the electromechanical capacitor and the external capacitor 
Ves2 := V2*(Cs/(Cs+Ces))^2; Vs2 := V2*(Ces/(Ces+Cs))^2; 
Note that the energy of the external capacitor is also included. 
Wstar := 0.5*k*x^2 - 0.5*Ces*Ves2 - 0.5*Cs*Vs2; 
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> Fbalance := simplify(diff(Wstar,x)); 
CriticalStability := simplify(diff(Fbalance,x)); 
Fbalance .5000000000 2. k Cs2 x3 4. x2 k g0 Cs2 4. x2 k ε0 A Cs 2. x k g02 Cs2 −  −  + ( := 

4. x k g0 ε0 A Cs 2. x k ε02 A2 1. ε0 A V2 Cs2 +  +  − ( )−  +  − 1. Cs g0 Cs x 1. ε0 A 2)
 

CriticalStability 3. k Cs3 g0 x2 k Cs3 x3 3. k Cs2 x2 ε0 A 3. k Cs3 g02 x−  +  −  + ( := 
6. k Cs2 g0 x ε0 A 3. k Cs x ε02 A2 1. k Cs3 g03 3. k Cs2 g02 ε0 A +  +  −  − 

3. k g0 Cs ε02 A2 1. k ε03 A3 ε0 A V2 Cs3 −  −  + ( )−  +  − 1. Cs g0 Cs x 1. ε0 A 3)

 

 

> soln := solve({Fbalance,CriticalStability}, {V2,x}); 

soln  = x .3333333333  + Cs g0 ε0 A
Cs ,{ := 

 = V2 .2962962963
k ( ) +  +  + Cs3 g03 3. Cs2 g02 ε0 A 3. Cs g0 ε02 A2 ε03 A3

ε0 A Cs3 }
 

> assign(soln); 
> eqCs := g0 - x; 

 := eqCs  − g0 .3333333333 ( ) + Cs g0 ε0 A
Cs  

> solve(eqCs=0, Cs); 

.4999999999 ε0 A
g0  

>  
 
Notice that the external capacitance in the limiting case is half of the electromechanical 
capacitor at zero displacements. Since the two capacitors are in series, the total 
capacitance will be one third the zero-displacement capacitance. This means that the 
initial gas is three times the original value. So, we get 0g  as the stable gap before pull-in 
occurs. So, we could have written this result intuitively without having to go through this 
algebraic exercise. 
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Problem 7 
 
The torsional stiffness of the serpentine structure is calculated on the basis of the bending 
of the vertical beams when a torque is applied about the axis as shown below. Since the 
horizontal beams in the figure are very small, their twists are neglected. 

 
There are two vertical beams of length p  and four of length p2 . The angular rotation 
(twist of the serpentine spring) for a vertical beam due to torque T  is given by 
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The total angular displacement for torque T  is the summation of the rotations of all the 
six (four long and two short) beams. Then, we can calculate the angular stiffness κ  
constant as follows. 
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Since there are two serpentine springs, one on either side, it will be  κ2  for the spring 
constant for the rotation about x  and y  axes.  
 
The rotational inertia J  of the disk is given by 
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In this modeling, we neglect the vertical forces and vertical deflections of the disk and 
consider only the rotations about x  and y  axes. The equations of motions are given by 
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The coupling between the two axes of rotation arises due to the torque created by the 
electrostatic force on the disk. For this, we simply calculate the net torque by numerically 
integrating the electrostatic force computed using the parallel-plate approximation. For 
this we need to know the z -height of the point in the disk for given xφ  and yφ . 
 
Consider the rotation matrix approach to find the z -height of a point ( x , y ) of the disk.  
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This gives the coordinates of all point in the disk. Note that 0,sin,cos gzryrx === αα  
for the disk in the zero position. When the disk rotates, these coordinates will change 
according to the rotation matrices above. The integration (summation in the discretized 
sense) is done over the area of the disk under which the electrode is activated. Use 

360/5πα =∆  and 20/ar =∆  for the purpose of discretization. Then, the area of the 
parallel plate for each discretized point is ( )( )α∆∆ rr . Then, the toques are given as 
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