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Motivated by the need to statically balance the inherent elastic forces in linkages, this paper
presents three techniques to statically balance a four-bar linkage loaded by a zero-free-
length spring attached between its coupler point and an anchor point on the ground. The num-
ber of auxiliary links and balancing springs required for the three techniques is less than or
equal to that of the only technique currently in the literature. One of the three techniques
does not require auxiliary links. In these techniques, the set of values for the spring constants
and the ground-anchor point of the balancing springs can vary over a one-parameter family.
Thrice as many balancing choices are available when the cognates are considered. The ensuing
numerous options enable a user to choose the most practical solution. To facilitate the evalu-
ation of the balancing choices for all the cognates, Roberts–Chebyshev cognate theorem is ex-
tended to statically balanced four-bar linkages.

© 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

A linkage is statically balanced if it is in static equilibrium in its every configuration. Static balancing a linkage under gravity
load has received wide attention. Counterweight balancing is known for a long time whereas balancing by adding springs is rel-
atively recent. For example, [13] presented static balancing of a rotatable body by adding springs. [17] discussed balancing of spa-
tial linkages, in particular a two degree-of-freedom serial linkage with revolute joints whose axes intersect perpendicularly.
Extending the work of [11] and [12], [14] gave general methods to statically balance gravity forces in multi-link linkages having
revolute joints or revolute-slider consecutive pair of joints. Common features of all these methods are: (i) the use of zero-free-
length springs as gravity-compensating elements, (ii) the use of auxiliary links, and (iii) the presence of only lower-kinematic
pairs, the most widely used type of joints. While there are methods that use normally available positive-free-length springs,
they are either approximate techniques, as in [1], or they make use of joints other than lower-kinematic pairs such as cam-
pulley (see [16]).

While the need for static balancing against gravity load is well appreciated and well addressed, there are also applications
where static balancing against elastic forces is necessary. One such need articulated by [5] is to balance against elastic forces of
cosmetic covering in hand prosthesis. More recently, efforts are underway to statically balance against elastic forces in compliant
mechanisms (see [7] and [2]). Compliant mechanisms utilize elastic deformation to transmit and/or transform force and motion
(see [8]). While in hand prosthesis, the system consists of rigid links and joints with elastic load, in compliant mechanisms
there are no rigid links. However, some compliant mechanisms can be approximately modeled as rigid link mechanisms with tor-
sional springs and translational springs (see [9, 8, 4]). No methods have been reported for perfect static balancing of torsional-
spring-loaded rigid-link mechanisms. As far as perfect static balancing of rigid-body linkages under translational spring loads
are concerned, there is only one reported work, which is of [5]. Herder's method also uses the concept of zero-free-length springs,
which is discussed later in this paper. While such perfect static balancing theories and the methods presented in this paper may

Mechanism and Machine Theory 48 (2012) 62–80

⁎ Corresponding author.
E-mail addresses: sangu.09@gmail.com (S.R. Deepak), suresh@mecheng.iisc.ernet.in (G.K. Ananthasuresh).

0094-114X/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mechmachtheory.2011.09.009

Contents lists available at SciVerse ScienceDirect

Mechanism and Machine Theory

j ourna l homepage: www.e lsev ie r .com/ locate /mechmt

http://dx.doi.org/10.1016/j.mechmachtheory.2011.09.009
mailto:sangu.09@gmail.com
mailto:suresh@mecheng.iisc.ernet.in
http://dx.doi.org/10.1016/j.mechmachtheory.2011.09.009
http://www.sciencedirect.com/science/journal/0094114X


not be directly applicable for compliant mechanisms, they aid in numerical optimization methods used for balancing compliant
mechanisms. In fact, in [2], the starting guess in their numerical optimization was motivated by a spring-loaded rigid-link mech-
anism. Thus, gaining further insights into static-balancing of spring-loaded rigid-link mechanisms is relevant today. This is one of
the motivations for the work presented in this paper.

1.1. Zero-free-length springs and Herder's method

Zero-free-length springs, as the name suggests, have zero-free-length, i.e., their end points coincide when the force in the
spring is zero.

The difference between a zero-free-length spring and a non-zero-free-length spring is illustrated in Fig. 1. As shown in Fig. 1,
the dependence of spring force

→
F on the displacement of one end point of the spring with respect to the other is linear in a zero-

free-length spring but nonlinear in a non-zero-free length spring even though both zero-free-length springs and non-zero-free-
length springs are assumed to be linear. Because of this nonlinearity, perfect balance of linkages with normally available positive-
free-length springs has not been possible as illustrated later in Section 2.1. Since springs other than zero-free-length springs have
not been shown to be amenable to perfect static balancing, this paper and [6] assume the springs, both loading spring and those
added for balancing, to be zero-free-length springs.

While most normal springs are of positive free-length, one can effectively realize zero-free-length springs and negative-free-
length springs using normal springs, as discussed in [13], and [6]. If the load spring is of positive free-length, then before applying
Herder's method or the static balancing techniques presented in this paper, one could add a negative free-length spring in parallel
to the load spring so that the net effect of the two is a zero-free-length spring. Thus, Herder's method and the methods of this
paper can handle any linear tension or compression load springs. Here onwards, unless stated otherwise, all the springs are of
zero free-length with linear and positive force-displacement relation.

[5] gave a method to statically balance a four-bar linkage loaded with zero-free-length spring at its coupler point as shown in
Fig. 2a. The method involves addition of two auxiliary links and two zero-free-length springs as shown in Fig. 2b. In this paper, we
take a different approach to the same problem and give three different techniques to statically balance the linkage. One of the
techniques distinguishes itself from the others in that it does not require auxiliary links but only two balancing zero-free-
length springs.

1.2. New static balancing methods

Among the three techniques that are presented in this paper, two are new and the remaining is partly new. The first technique
that we present requires one balancing spring and two auxiliary links. It is generic in nature and the balancing parameters (i.e.,
spring constant and anchor point of balancing springs) are not constrained by the linkage parameters (i.e., the location of the
joints). Balancing parameters of the remaining two techniques are dependent on the linkage parameters, and both techniques re-
quire two balancing springs. While the second technique does not require any auxiliary link, the third technique requires two

Zero-free-length spring Non-zero-free-length spring

= =

Force magnitude| | as a function of displacement magnitude | |

Linear function

Force vector as a function of displacement vector

If = and = in an orthogonal coordinate frame,then

(Linear functions)

(Non-linear functions)

Free-length of the spring be

Linear (affine,to be precise) function

Fig. 1. Difference between zero-free-length and non-zero-free-length springs.
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auxiliary links. Furthermore, the third technique can be applied in two different ways. The balancing solution in one of those ways
matches the Herder's solution whereas the remaining one is new. Given a four-bar linkage and a static balancing technique, all the
balancing parameters are not unique. For example, in Fig. 2b, the geometry of the auxiliary links and connection points G, E, and T
are unique but the anchor point H can lie anywhere on a straight line, and the spring constants of the balancing springs are func-
tions of the position of H. The non-unique balancing parameters are the same for techniques 2 and 3 and they are:

• Anchor point H of balancing spring 1, and
• Spring constants kb and kt of balancing springs 1 and 2, respectively.

It is later shown that the set of all possible values for {H,kb,kt} that ensures static balance is a one-parameter family.
It may be noted that in spite of the reduction or elimination of auxiliary links and balancing springs, a user may find it difficult

to satisfy practical constraints. Therefore, additional solutions offered by the cognates could be helpful to choose the most prac-
tical solution.

1.3. Static balancing parameters and cognates

A loaded four-bar linkage essentially takes a zero-free-length spring along its coupler curve. In a more general design problem,
a zero-free-length spring and the path along which it should be taken are specified, and a designer has to design a four-bar linkage
having a coupler curve matching the specified path and also statically balance the four-bar linkage so that the load spring can be
moved around the specified path effortlessly. Since the cognates of a four-bar linkage have the same coupler curve, all the three
cognates enter into the design space. Hence, the designer would have to evaluate the one-parameter family of balancing param-
eters of a technique on all the cognates. We now present a result which would help the designer to visualize balancing parameters
of the other cognates while the balancing parameters of one of the cognates is being evaluated.

If (H1,kb1,kt1), (H2,kb2,kt2), (H3,kb3,kt3), are the balancing variables for the three cognates, then the set {(H1,kb1,kt1), (H2,kb2,kt2),
(H3,kb3,kt3)} is a triplet of one-parameter families. In this paper, a new parameter parametrizing this triplet and having the follow-
ing features is derived:

1. For any value of the new parameter, the triangle △H1H2H3 is similar to the cognate triangle. As the parameter varies, this tri-
angle scales and rotates about a point named as the focal pivot.

2. Ratio kb1 :kb2 :kb3 is the same for any value of the new parameter.

Balancing spring 1

Loading
zero-free-length
spring (   ) 

Coupler
(Link 2)

Link 3

Link 1

Fixed pivots
Anchor point

Auxiliary links

Balancing spring 2

Loading spring

Anchor point

Anchor point

b

a

Fig. 2. (a) A four-bar linkage loaded with a zero-free-length spring attached between its coupler point and a fixed anchor point, (b) The four-bar linkage that is
statically balanced by addition of two links and two springs using Herder's method.
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3. The focal pivot and the ratio kb1 :kb2 :kb3 can be geometrically obtained from the knowledge of the cognate triangle and the
ground anchor point of the loading spring.

This result may be viewed as an extension of Roberts–Chebyshev cognate theorem to static balancing.
Roberts–Chebyshev's theorem (see, for example, [10]) says that for a given four-bar linkage and a coupler point on it, one can

find twomore four-bar linkages and coupler points on them (see Fig. 3) such that the coupler points of all the three trace the same
path. The three four-bar linkages are called the cognates. The three cognate four-bar linkages in Fig. 3 are — B1C1D1B2, B2C2D2B3,
and B3C3D3B1. In the configuration shown, the coupler points of all the three linkages are coincident at E. It is these points which
trace the same path. The triangles B1B2B3, C1D1E, EC2D2, and D3EC3 are all similar to each other. The triangle formed by the fixed
pivots of the cognates (in Fig. 3, it is triangle B1B2B3) is called the cognate triangle. The ratio of the sides of this triangle appears in
many interesting properties of cognates; see [10], for example.

1.4. Organization of the paper

In Section 2, the three techniques for static balancing of a four-bar linkage are presented. In Section 2.3, a prototype of one of
the three techniques that doesn't require auxiliary links is described. In Section 3 the extension of Roberts–Chebyshev cognate
theorem to static balancing is presented. In Section 4, application of the techniques presented in this paper to gravity loads, 2R
linkages and slider crank linkages is discussed. Concluding remarks are in Section 5.

2. Static balancing of a four-bar linkage

In this section, the preliminary concepts used in static balancing of a four-bar linkage are explained first. Detailed discussion
on these preliminaries could be found in [6]. After the preliminaries, the three techniques of static balancing a spring-loaded four-
bar linkage are described.

2.1. Preliminaries

Some of the simple statically balanced linkages considered in [6] are shown in Figs. 4, 6, and 7.
Shown in Fig. 4 is the simplest of the basic spring balancers described by [6]. When

→
AN ¼ − →

AP, the linkage is statically bal-
anced because the net force at point D, i.e., 2k

→
DA, is always pointing towards point A for any φ resulting in zero moment of the

lever about A.
As a matter of curiosity, let us replace zero-free-length springs in Fig. 4 with non-zero-free-length springs as shown in Fig. 5.

The condition for cancelation of horizontal forces becomes− l1−l0
l1

k
→
AP ¼ l2−l0

l2
k

→
AN. Unlike for zero-free-length springs, the balan-

cing condition is not independent of φ, and the condition can only be satisfied for finite values of φ but not for any φ.

2

1

2
3 1

2

3

1

C3

D3

B1

C1 D1

B2

C2
D2

B3

3

E

K

Fig. 3. The cognates of a four-bar mechanism taking a load spring along their common coupler curve.

A
NP

AN

DADA

AP

D

Fig. 4. Basic spring force balancer.
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Fig. 6 shows a parallelogram linkage, ADEN, with two springs diagonally attached between the joints. It may be verified that for
the same φ, the potential energy of this system is the same as that in Fig. 4. If one is statically balanced, so is the other.

Fig. 7 shows again a parallelogram linkage but having two degrees of freedom. For the same φ, the potential energy of this sys-
tem is the same as that in Fig. 6. If one is statically balanced, so is the other.

2.1.1. Composition of springs
In [6], a useful concept of composing two zero-free-length springs into an equivalent one is presented. By referring to Fig. 8,

suppose that there is a spring with one end anchored at A and the other end at a moving point E. Also suppose that we desire
the spring to be anchored at point D rather than at A, but modification of the spring is not allowed. In such a case, another spring
of spring constant, say k2, is connected between point E and a point on the ground, say B, such that k1

→
DA ¼ −k2

→
DB. When the

forces at E are resolved along AD and DE, it can be noticed that forces along AD always cancel out and the net force is

A
NP

D
φ

PD =

ND =

: free length of both springs

Fig. 5. Zero-free-length springs replaced by normal springs.

N

D

A φ

E

Fig. 6. Balanced parallelogram.

A

N

E

D
φ

θ

Fig. 7. Balanced two degree of freedom parallelogram linkage.

A B
D

E

1 2

1DA = − 2DB

2ED

2DB

1ED

1DA

Fig. 8. Composition of two zero-length-spring into an equivalent one. The equivalent spring between E and D is shown in gray color.
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k1 þ k2ð Þ→ED. The same force is obtained if there were to be a spring of spring constant (k1+k2) anchored at D and the other end at
E. Hence the net effect or composition of the two springs anchored at A and B is a virtual spring anchored at D. This is an important
concept for the techniques presented in this paper.

2.1.2. Plagiograph
In a plagiograph linkage, the path traced at the output point is a scaled and rotated replica of the path traced at the input point.

If the linkage shown in Fig. 9 satisfies the following conditions:

1. PQ
� ¼ SR

�
and PS

� ¼ QR
�

so that PQRS is a parallelogram,
2. ∠RQM=∠NSR (this angle is labeled as α) and RQ

MQ ¼ NS
RS (this ratio is labeled as m) so that △NSR is similar to △RQM,

then the linkage is called a plagiograph or a skew pantograph. It has the following property: output point N follows the input
point M through a scaling and rotation transformation about point P with the scale factor and the rotation angle being m and
α. That is,

→
PN ¼ mRa

→
PM

� �
ð1Þ

where, Ra is the rotation operator which operates on a planar vector to rotate it by the angle α.
The point, P, about which scaling and rotation transformation happens is referred as the base pivot of the plagiograph. A de-

tailed treatment of plagiographs can be found in [3] and [15].

2.2. Static balancing a given spring-loaded four-bar linkage

Consider a four-bar linkage loaded by a zero-free length spring at its coupler point as shown in Fig. 1.
Before adding auxiliary links and additional springs to balance it, let us see if there is a possibility of it being in static balance as

such. Fig. 10 shows the coupler curve traced by point E. If the linkage has to be in equilibrium at every configuration, then the
potential energy of the spring has to be the same for every configuration. This is possible only when every point of the coupler
curve is at a constant distance from K, i.e., when the coupler curve is a circle centered at K. In general this is not true except in
extreme cases such as when E coincides with D (or C) and K coincides with A (or B).

Next, various possibilities of static balancing a four-bar linkage by adding auxiliary links and springs are considered. Only those
possibilities where the number of additional balancing springs and auxiliary links is less than or equal to that of [5] are explained.
As can be seen in Fig. 1, [5] used two auxiliary links and two balancing springs.

M

S

P

R

N

Fig. 9. A plagiograph or a skew pantograph linkage.

AB

C

D

K

E

Fig. 10. A four-bar linkage with an anchored load spring attached to its coupler point.
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2.2.1. Technique 1
Motivated by the observation in Fig. 7, the four-bar linkage can be balanced by creating a balanced parallelogram as shown in

Fig. 11. Here, four auxiliary links and one balancing spring are used. But the number of auxiliary links can be reduced to two.

2.2.1.1. Reducing the number of auxiliary links. As shown in Fig. 12, if T is a point on the (extended) link EP such that
→
EP ¼ →

PT , then
TKQP forms a parallelogram. Relocation of the spring between P and Q to be between T and K does not change its potential energy
and hence static balance is undisturbed. The advantage of the relocation is that the two auxiliary links KQ and QE are unnecessary.
This way of balancing is this paper's technique 1 to statically balance a four-bar linkage.

The characteristics of technique 1 can be summarized as follows:

1. This way of balancing does not induce any load in any of the links making up the four-bar linkage.
2. The balancing variables are l1, and l2, i.e., lengths of PE and PK, as shown in Fig. 12. l1 and l2 can be of any convenient values.

2.2.2. Technique 2
Instead of adding four links to make up a parallelogram as in Fig. 11, addition of only two auxiliary links is necessary if links ED

and DA are used to form the parallelogram as shown in Fig. 13. This parallelogram can balance a spring connected between its
opposite vertices. While the load spring is not between its opposite vertices, another spring (labeled as balancing spring 1) is

AB

C

E

D

K

P

Fig. 11. A balanced parallelogram on the load spring.

AB

C

E

D

(balancing spring)

T

P

K

Balancing parameters

Fig. 12. Technique 1: static balancing with two auxiliary links and one balancing spring.

B

C

E

F

D

A

K

Fig. 13. Forming a parallelogram using two auxiliary links.
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added so that the resultant of its composition with the load spring is between the opposite vertices of the parallelogram, as shown
in Fig. 14. Recall the composition property of springs noted in Section 2.1.1.

The equivalent spring between A and E in Fig. 14 is balanced by adding another spring (labeled as balancing spring 2) across
the other two opposite vertices of the parallelogram as shown in Fig. 15. Thus, the equivalent spring and balancing spring 2 are in
static balance. Equivalently, the load spring, balancing spring 1 and balancing spring 2 are in static balance. With this, the linkage
is in static balance with two auxiliary links and two balancing springs. The auxiliary links can be eliminated as explained next.

As shown in Fig. 16, if T is a point on link DE (extended if necessary) satisfying
→
ED ¼ →

DT , then AFDT is always a parallelogram
and DF=TA. Hence, relocation of the spring between D and F in Fig. 15 to be between T and A as in Fig. 16 does not change its
potential energy. Consequently, the static balance is also undisturbed. Furthermore, the auxiliary links AF and FE are no longer
required. This way of balancing shown in Fig. 16, requiring two balancing spring but no auxiliary link, is the second technique
of this paper to balance a four-bar linkage.

This technique has two options. In Fig. 13, a parallelogram was completed out of links AD and DE. One could have completed
the parallelogram out of links BC and CE as well and proceed in a similar manner. We say that the balanced parallelogram is based
at A in the former case and based at B in the latter case.

Among the balancing parameters of this technique, the anchor point of balancing spring 2 is always one of the fixed pivots of
the four-bar linkage. The remaining balancing parameters: (i) H, the anchor point of balancing spring 1, (ii) kb, the spring constant
of balancing spring 1, and (iii) kt, the spring constant of balancing spring 2, have to be solved from the equations included in

B

F

D

A

K

AH = KA,

C

E

H

Balancing spring 1

Equivalent spring

Fig. 14. An equivalent spring between opposite vertices of the parallelogram AFED.

B

C

K

AH = KA,

E

F

H
A

D

Balancing spring 1

Balancing spring 2

Fig. 15. Adding balancing spring 2 across opposite sides of the parallelogram to balance the load spring and balancing spring 1.

B

C

E

D
K

H

T

A

F

Balancing spring 1

Balancing spring 2

Fig. 16. Option 2 for balancing the four-bar linkage without auxiliary links.
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Fig. 16. Those equations can be rewritten in a general form so that they are applicable to both the options of this technique. IfW is
where the balanced parallelogram is based (i.e., W is A or B) and K is the anchor point of load spring, then

kb
→
WH ¼ kl

→
KW ð2Þ

kb ¼ kl
KW
WH

positive if
→
WH is along

→
KW; and negative otherwise

� �
ð3Þ

kt ¼ kb þ kl: ð4Þ

Eq. (2) says that H has to lie on a line starting fromW and along the direction of
→
KW . The line is called the straight-line locus of

H. Once a point on this line is chosen as H, kb and kt get determined as per Eqs. (3) and (4). Thus the set of solutions to (H,kb,kt) is a
one-parameter family.

2.2.3. Technique 3
As mentioned earlier, the only knownmethod in literature to statically balance a spring-loaded four-bar linkage was described

by [5]. In the work of [5], a plagiograph is first statically balanced and then it is modified to obtain a balanced four-bar linkage with
two auxiliary links and two balancing springs as shown in Fig. 2b. It is now shown that the balancing arrangement obtained by [5]
can also be obtained by combining technique 2 of this paper with the concept of plagiograph. This later approach is technique 3 of
this paper. Whereas technique 3 provides four options, the approach of [5] provides only two of these options. Technique 3 and its
options are described next.

In technique 2, balancing spring 1 and the loading spring were connected to the coupler at the same point, coupler point E. If
the coupler point is not accessible to balancing spring 1, then another point to anchor the spring has to be found. It is also desir-
able that the motion of the other point is related to the coupler point. By taking a cue from Section 2.1.2, a plagiograph can be

E

D

B

C

A

F

L

H

G

T

K

E

D

B

C

A

F

L

H

G

T

K

kl

E

D

G

B

C

A

Additional links

(scaling and rotation transformation)

F

(anticlockwise) is the rotation angle

is the reference point for scaling and rotation

E

D

G

B

C

A

F

L

The fixed point of the plagiograph

a b

cd

Technique 2

Final balancing arrangement

Fig. 17. Technique 3 for statically balancing a four-bar linkage.
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completed out of two links of the given four-bar linkage, as shown in Fig. 17a so that point G follows a scaled and rotated locus of
coupler point E.

Whatever scaling and rotation transformation of point E that point G follows, the same transformation is applied to point K to
obtain point L, i.e.,

→
AL ¼ mRa

→
AK

� �
, as shown in Fig. 17b. If a spring is attached between point L and point G, as in Fig. 17b, then the

spring is a scaled (by factor m) and rotated copy of the load spring in Fig. 17a. Further, if the spring constant of the spring in
Fig. 17b is 1

m2 times the spring constant of the load spring, i.e., kl
m2, then its potential energy kl

2m2 LGð Þ2 ¼ kl
2m2 m KEð Þð Þ2 ¼ kl

2 KEð Þ2 is
the same as that of the load spring. Therefore, the potential energy of the spring loads in Fig. 17a and b are the same. As a conse-
quence of this, any extra spring addition that balances the spring load in Fig. 17b would also balance the spring load in Fig. 17a.

In Fig. 17b, one may think of links BC, CF, and FA to constitute a four-bar linkage loaded with a spring at its coupler point G.
Application of technique 2 of static balancing to this spring-loaded linkage leads to addition of two extra spring, as shown in
Fig. 17c. The same two springs would statically balance the spring load of Fig. 17a also.

Balancing the given spring load of Fig. 17a by adding the balancing springs of Fig. 17c, as shown in Fig. 17d, is the third tech-
nique to balance a spring-loaded four-bar linkage. It may be noted in Fig. 17d that none of the balancing springs are connected to
coupler point E.

When the four-bar linkage of Fig. 17b was balanced using technique 2, there were two options: balanced parallelogram based
at A or based at B (see Section 2.2.2 describing technique 2).

Furthermore, when a plagiograph was completed out of the four-bar linkage in Fig. 17a, the base pivot of the plagiograph was
at A. We can also complete a plagiograph out of the same four-bar linkage so that the base pivot is at B, as shown in Fig. 18. Thus,
we have 2×2=4 options, i.e., the base pivot of plagiograph at A or B, and balanced parallelogram based at A or B. In the technique
of [5], the base pivots of both plagiograph and balanced parallelogram always coincide. Therefore only two of the above four op-
tions are derivable from the technique of [5].

The equations provided in Fig. 17d are necessary to solve for the ground anchor-point of balancing spring 1 (H), the spring
constant of balancing spring 1 (kb) and the spring constant of balancing spring 2 (kt). In the equations, point A is the base
pivot of both plagiograph and balanced parallelogram. To make the equations applicable to any of the four options of this tech-
nique, notations U and W respectively denoting the base pivots of plagiograph and balanced parallelogram are appropriately
substituted for A in the equations as follows:

→
UL ¼ mRα

→
UK
� �

ðL is the anchor point of the equivalent load springÞ ð5Þ

→
WH ¼ kl

m2kb

→
LW ð6Þ

kb ¼ kl LWð Þ
m2 WHð Þ ðpositive if

→
WH is along

→
LW ; negative otherwiseÞ ð7Þ

kt ¼ kb þ
kl
m2 ð8Þ

m and α in the above equations are found from Fig. 17a or 18 depending on whether U is A or B. Eq. (6) indicates that H can lie
anywhere on a line along

→
LW and passing through W. Spring constants kb and kt are functions of the position of H on this line, as

per Eqs. (7) and (8). Therefore, the set of all solutions for (H,kb,kt) is a one-parameter family.
The main features of the three techniques presented in this section as well as Herder's method are summarized in Table 1.

A

C

D

E

K

B

F

Additional links

G

and clockwise

The fixed pivot of the plagiograph

where

Fig. 18. Plagiograph with base pivot at B.
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2.3. Prototype with technique 2

A prototype of a spring-loaded four-bar linkage balanced using technique 2 is shown in Fig. 19. The zero-free-length springs
used in the prototype were realized using ‘pulley and string arrangement’ described by [6]. A pulley and string arrangement con-
sists of a normal spring having its one end anchored to the ground and the other end connected to a string. The string passes over
a small pulley pivoted to the ground, as shown in Fig. 20. The pulley that is assumed to be frictionless and of negligible diameter
transmits both tension and deflection of the normal spring. Hence, the portion of the string that has passed over the pulley may be
thought as a virtual spring of stiffness the same as the normal spring stiffness. The virtual spring acquires zero-free-length if the
arrangement is such that the passed-over length of the string is zero when the tension is zero.

The prototype design is such that the ratio of spring constant of loading spring, balancing spring 1 and balancing spring 2 is
1:1:2. To realize these three springs, three identical springs were taken. While two spring were used as it is within spring-
pulley arrangements, only half the length of the spring was used for the remaining spring, as can be seen in the right hand
side of Fig. 20. It may be noted that the anchor points of loading spring and balancing spring 1 on the coupler link are the
same. Further, the anchor points of the loading spring and balancing spring 2 on the coupler link are located symmetrically
with respect to a revolute joint on the coupler link. It may further be verified that the prototype satisfy Eqs. (2)–(4).

Fig. 19. A prototype of four-bar linkage that is statically balanced using option 2. The four-bar linkage seen in the above figure is a Watt's straight-line mechanism.

Undeflected spring

Pulley

Fig. 20. Realization of a zero-free length spring.

Table 1
Summary of different techniques to statically balance a spring-loaded four-bar linkage presented in this paper.

Technique 1 Technique 2 Technique 3 Herder's Technique

Number of Auxiliary Links 2 0 2 2
Number of balancing springs 1 2 2 2
Variable balancing parameters l1, l2 H, kb, kt H, kb, kt H, kb, kt
Family of feasible balancing parameters Two-parameter One-parameter One-parameter One-parameter
Number of options One Two Four Two
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3. Static balancing parameters and the cognates

Adesigner seeking to statically balance a given spring-loaded four-bar linkage has to evaluate a family of feasible balancingparam-
eters for each of the options under the three techniques (see Table 1) before choosing the one that best meets the design require-
ments. As was remarked in Section 1.3, a more general design problem would be to design a four-bar linkage that would guide a
given load spring along a specified path and then statically balance the linkage so that the load spring can be moved along the
path effortlessly. If a four-bar linkagewith its coupler curvematching the specified path is found, then by Roberts–Chebyshev cognate
theorem, it follows that there are two more four-bar linkages whose coupler curves also match the specified path. In order make the
best design choice, the designer has to evaluate feasible balancing parameters of options under techniques 2 and 3 on all the three
cognates. This section presents a result whichwill aid the designer to evaluate these feasible balancing parameters on all the cognates
in a unified manner. Evaluation could be for the space occupancy of the balancing arrangements or for the loads that linkages expe-
rience. As far as technique 1 is concerned, the balancing parameters can be evaluated independent of the four-bar linkage.

Since three four-bar linkages are considered in this section, the balancing parameters of techniques 2 and 3, such as H, kb, kt,W,
U, and L, are subscripted with 1, 2, or 3 to correspond to the first, the second or the third cognate. Since all the cognates are eval-
uated for the same load spring, load-spring-anchor-point K and loading spring-constant kl are the same for all the cognates. When
an option of technique 2 or 3 is applied with a cyclic symmetry on all the cognates, each of (H1,kb1,kt1), (H2,kb2,kt2), and (H3,kb3,kt3)
can vary over their respective one-parameter family. Instead of separate parametrizations for the three one parameter families,
this section aims to give a single parametrization of the triplet {(H1,kb1,kt1), (H2,kb2,kt2), (H3,kb3,kt3)} such that the parametrization
has cognate related invariants.

Suppose that an option of technique 2 or 3 is applied on all the cognates with a cyclic symmetry. To derive a cognate triangle
related parametrization for {(H1,kb1,kt1), (H2,kb2,kt2), (H3,kb3,kt3)}, one should first establish the locus of Hi as well as kbi and kti as a
function of position of Hi, for i=1,2,3. This is possible only if the constant terms, such asWi, Ui,mi, αi and Li, in Eqs. (2)–(4) in the
case of technique 2 or Eq. (5)–(8) in the case of technique 3 are known. Deduction of these constant terms from the details of the
given four-bar linkage was seen in Sections 2.2.2 and 2.2.3. However, Table 2 shows that they can also be deduced from the cog-
nate triangle and the ground-anchor point of the loading spring. Thus, the knowledge of the cognate triangle and the ground-
anchor point of the loading spring is sufficient to establish the locus of Hi and the relation between Hi, kbi and kti, for i=1,2,3.

Fig. 21a shows the cognate triangle and the ground-anchor point of the loading spring. The sides corresponding to cognates 1,
2 and 3 are labeled as s1, s2, and s3, respectively. If the static balancing option used happens to be the option of technique 3 that
has the base point for both plagiograph and balanced parallelogram at the anticlockwise end of s1, s2, and s3, then the loci of H1, H2

and H3, denoted by l1, l2 and l3, are as shown in Fig. 21b. If a different option of the same technique or an option of technique 2 is
used, then a different set of loci are obtained, as shown in Fig. 21c and d. Note that for both techniques, the origin for l1, l2 and l3 is
one of the vertices of the cognate triangle with a one–one and onto relation between the origins and the vertices. Because of this
feature, it is now shown that H1, H2 and H3 can be varied along their loci as if they are at the respective vertices of the cognate
triangle that is undergoing scaling and rotation transformation about a fixed point. When H1, H2 and H3 are varied as noted
above, kb1, kb2 and kb3 also vary. However, it will be shown that their ratio remains constant. This result follows from a solution
given in this paper to a problem in geometry. The problem and its solutions are described next.

3.1. A geometric problem and its solution

Given a triangle and three straight lines originating from its three vertices, find three points on the three lines so that they
form a triangle that is similar to the given triangle. With respect to Fig. 22, the problem may be stated as: find points Sa, Sb and
Sc on straight-lines a, b and c respectively so that △SaSbSc is similar to △ABC.

The method to obtain Sa, Sb and Sc varies for the following three cases, as described next.

Table 2
Deduction of various quantities in Eqs. (2)–(8) from the cognate triangle.

Quantities other than H, kb and kt in Eq. (2)–(8):

K, U, W, m, α, L

K Anchor point of loading spring
W Base pivot of balanced parallelogram

⇒ Coincident with a fixed pivot of the four-bar linkage
⇒ One of the vertices of the cognate triangle
∵ Fixed pivots of cognates form the cognate triangle (see Fig. 3)

U Base of pivot plagiograph
⇒ One of the vertices of the cognate triangle (for the same reasons as of W)

m Ratio of two sides of the coupler triangle (see Figs. 17a and 18)
⇒ Ratio of two sides of the cognate triangle
∵ Cognate triangle is similar to coupler triangle (see Fig. 3)

α An angle of the coupler triangle (see Figs. 17a and 18)
⇒ An angle of the cognate triangle (∵ cognate △∼coupler △)

L Anchor point of equivalent of loading spring (see Fig. 17b)
Found using the equation →UL ¼ mRα →UKð Þ. (U, m, α and K are as above.)
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3.1.1. Case (i): a, b and c are parallel
Sa, Sb and Sc can be obtained by translating A, B and C along the parallel lines, as shown in Fig. 23, because Sa, Sb and Sc respec-

tively lie on lines a, b and c, and △SaSbSc is congruent to △ABC.

3.1.2. Case (ii): a, b and c are concurrent
Sa, Sb and Sc can be obtained by scaling A, B and C about the point of concurrence, as shown in Fig. 24, because Sa, Sb and Sc

respectively lie on lines a, b and c, and △SaSbSc is similar to △ABC.

3.1.3. Case (iii): a, b, and c are neither parallel nor concurrent
If the geometric problem does not fall under case (i) or case (ii), such as the one in Fig. 22, then it falls under case (iii). In this

case, it is proved later in Section 3.1.4 that there exists a non-zero angle η such that when lines a, b and c are rotated by the same
angle η about points A, B, and C, respectively, the lines become concurrent at a point, as depicted in Fig. 25. The concurrent point is
named as focal pivot. In Fig. 25 the focal pivot is denoted as P. In order to find a solution to Sa, Sb and Sc, obtain△A1B1C1 that is the
rotated copy of△ABC about point P by some angle δ, as shown in Fig. 26. If the respective intersection points of lines PA1, PB1, and
PC1 with lines a, b, and c are A2, B2, and C2, as shown in Fig. 26, then it is proved in the following paragraph that△A2B2C2 is similar
to △ABC.

KCommon anchor point of load springs

a) A cognate triangle and the
ground anchor point of a load
spring

b) Technique 3: base pivot of plagiograph (U) and base of balanced
parallelogram (W) are not coincident.

c) Technique 3: base pivot of plagiograph (U) and
base of balanced parallelogram (W) are coincident.

d) Technique 2: base of the balanced paral-
lelogram (W) at the indicated vertices of the
cognate triangle.

Fig. 21. The locus of anchor point of balancing spring 1 (H) for the three cognates under options of techniques 2 and 3.
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Points A2, B2 and C2 form a solution to Sa, Sb and Sc because△A2B2C2 and△ABC are similar, and by definition, points A2, B2 and
C2 lie on lines a, b and c, respectively. Different values of angle δ leads to different solutions.

Proof of similarity of△A2B2C2 and△ABC. △A2PA,△B2PB and△C2PC are similar to each other since angles δ and η are common
to all of them. Hence

PA2

PA
¼ PB2

PB
¼ PC2

PC
ð9Þ

Substitution of PA=PA1, PB=PB1 and PC=PC1 (△A1B1C1 is a rotated copy of △ABC about P) in Eq. (9) leads to PA2
PA1

¼ PB2
PB1

¼ PC2
PC1

.
PA2
PA1

¼ PB2
PB1

¼ PC2
PC1

implies that △A2B2C2 is a scaled copy of △A1B1C1 (about P). In turn △A1B1C1 is a rotated copy of △ABC (about P).
Hence, △A2B2C2 is similar to △ABC, and it can be visualized as a rotation and scaling transformation of △ABC about the focal
pivot P.

b

A
C

Bc
a S

S
S

Fig. 24. Finding Sa, Sb, and Sc in case (ii).

Fig. 25. Description of focal pivot.

b

A
C

B
c
a

S

S

S

Fig. 23. Finding Sa, Sb, and Sc in case (i).

Ba

c

A
C

b

Fig. 22. Find a triangle similar to △ABC with corresponding vertices on the same line.
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3.1.4. Finding the focal pivot
Let lines a, b and c be rotated by the same angle, say β, about points A, B and C, respectively. If for some β, the three lines be-

come concurrent, then by definition, β=η, and the point of concurrence is the focal pivot. If Ia,b is the intersection point of lines a
and b, and Ic, a is the intersection point of lines c and a, then at the concurrence, Ia,b and Ic, a meet. Ic, a and Ia,b can meet only at the
intersection of paths that Ia,b and Ic, a trace when angle β is varied continuously.

The path traced by Ia,b is a circle passing through A, B and the original position of Ia,b (see the theorem in Appendix B).
Similarly, the locus of Ic, a is a circle passing through C, A and the original position of Ic, a. The two loci are shown in Fig. 27.

Locating the focal pivots in all the possible types of intersection between the loci is addressed as follows.

• Ia,b, or Ic, a will not exist when the a and b, or c and a are parallel and hence the Ia,b and Ic, a circles cannot be drawn: Finding the focal
pivot is necessary only in case (iii), where all three of a, b and c are not parallel to each other. Hence, it is possible to find at least
two pairs among a, b and c that are not parallel to each other. Those pairs may be taken as {a,b} and {c,a}, for which Ia,b and Ic, a
exists.

• Ia,b circle and Ic, a circle are coincident: It is shown in Appendix A.1 that if Ia,b circle and Ic, a circle are coincident, then a, b and c
before rotation (at β=0) have to be concurrent. Concurrency at β=0 means that the problem falls under case (ii). Since the
procedure to find the focal pivot is used only for case (iii), the possibility of coincidence of Ia,b and Ic, a circles does not arise.

• Ia,b circle and Ic, a circle intersect at two distinct points: This is the generic possibility and is illustrated in Fig. 27. One of the inter-
section points is always A. The other intersection point is denoted as M. In Appendix A.2, it is shown that if rotation angle β is
such that Ia,b is at M, then for the same β, Ic, a is also at M. On the other hand, if β is such that Ia,b is at A, then for the same β, Ic, a
cannot be at A. Hence, it can be concluded that M is the one and only focal pivot.

• Ia,b circle and Ic, a circle touch each other at a single point: This is just a limiting case of two distinct intersection points A andM of
the previous possibility merging into one. Here also, M, which coincides with A, is the only focal pivot.

Thus, to find the focal pivot for case (iii), by assuming that non-parallel pair of lines are {a,b} and {c,a}, one should draw two
circles: one passing through A, B and Ia,b (at β=0) and the other passing through C, A, Ic, a (at β=0). The two circles either inter-
sect at two distinct points: M and A, or touch at the point A. In the former case, the focal pivot is M and in the later case it is A.

Fig. 26. Points A2, B2 and C2 form a solution to Sa, Sb and Sc.

I

AC

B

c

a

I

I

b

M

,

,

,

Fig. 27. Geometric construction to find the focal pivot.
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The common properties of solution to Sa, Sb and Sc in all the possible cases presented in Sections 3.1.1, 3.1.2 and 3.1.3 are sum-
marized below.

• The set of possibilities for Sa, Sb and Sc constitute a one-parameter set. A convenient parameter parametrizing the set in case (i)
is the translation, in case (ii) is the scale factor, and in case (iii) is the rotation angle δ.

• The ratio ASa :BSb :CSc is the same throughout the one-parameter set even though ASa, BSb and CSc themselves vary over the set.
The ratio is 1 :1:1 in case (i), PA :PB :PC in case (ii), and again PA :PB :PC in case (iii) (see Eq. (9) where A2, B2 and C2 are solu-
tions to Sa, Sb and Sc).

These properties are now applied to the cognate triangle and loci l1, l2, and l3, as described next.

3.2. A parametrization with cognate-triangle-related invariants

The solutions given in Section 3.1 are now applied to the cognate triangle and loci of H shown in Fig. 21, by taking A, B, C, a, b, c,
Sa, Sb, Sc as W1, W2, W3 (the vertices of the cognate triangle), l1, l2, l3, H1, H2, H3, respectively. Then properties at the end of
Section 3.1, take the following form:

There is a one-parameter parametrization of the balancing variables of the three cognates where

• △H1H2H3 is similar to △W1W2W3 (the cognate triangle), and
• the ratio W1H1 :W2H2 :W3H3=W1P :W2P :W3P or 1:1:1 is the same for the entire one parameter set of possibilities.

The second property is used in Table 3 to rewrite the ratio of spring constants of balancing spring 1 of the three cognates. It is
seen that the ratio involves only constants. Hence, the ratio itself is invariant for this one-parameter set. It may further be noted
that all these constants are derivable just with the knowledge of the cognate triangle and the location of the ground-anchor point
of the loading spring. With this follows the final result of this section: when an option of technique 2 or 3 is applied on all the
cognates, the family of all possible sets of balancing parameters of the three cognates can be parametrized such that

1. The triangle of anchor point of balancing spring 1 (H) of the three cognates is proportional to the cognate triangle over the en-
tire family. The two triangles are related by a combination of scaling, rotation and translation transformations.

2. The ratio of spring constant of balancing spring 1 (kb) for the three cognates is the same throughout the one-parameter family.
To calculate this ratio, the knowledge of location of the anchor point of the loading spring and the cognate triangle is enough.

It is believed that when an option of techniques 2 or 3 is being evaluated, the above parametrization would help a designer to
better visualize balancing parameters of all the cognates in a unified manner. This result may be seen as extension of Roberts–
Chebyshev cognate theorem to static balancing.

4. Discussion

In the static balancing techniques 1 and 2 as well as in options of technique 3 that has the same base for the balanced paral-
lelogram and the plagiograph, one of the links pivoted to the ground does not play any role in static balancing. Link BC is such a
link in Figs. 12, 16 and 17d. This link neither provides connection points to springs and auxiliary links nor influences the balancing
parameters. If the link length is changed or the ground pivot of the link is changed or the link is altogether removed, the static
balance remains unaffected. Consequently, these methods can be applied to spring-loaded serial two-revolute-jointed (2R) link-
ages also since removing a ground pivoted link from a four-bar linkage gives a 2R linkage.

Furthermore, when additional kinematic constraints are added to a linkage that is already in static balance, the static balance
remains unaffected. Hence, loaded 2R linkage that is constrained as in a slider crank linkage is also amenable to the static balan-
cing techniques of this paper.

Furthermore, in [6], it was shown that gravity loads are limiting cases of zero-free-length spring loads. Hence, the techniques
of this paper are applicable even when zero-free-length spring loads are replaced by gravity loads.

Table 3
Ratio of spring constants of balancing spring 1 for three cognates.

Technique kb1
:kb2

:kb3 kb1
:kb2

:kb3
rewritten using

W1H1 :W2H2 :W3H3=W1P :W2P :W3P or 1:1:1

3 kl L1W1ð Þ
m2

1 W1H1ð Þ :
kl L2W2ð Þ
m2

2 W2H2ð Þ :
kl L3W3ð Þ
m2

3 W3H3ð Þ

(see Eq. (7))

L1W1ð Þ
m2

1 W1Pð Þ :
L2W2ð Þ

m2
2 W2Pð Þ :

L3W3ð Þ
m2

3 W3Pð Þ

or L1W1ð Þ
m2

1
: L2W2ð Þ

m2
2

: L3W3ð Þ
m2

32
Case (ii) of Section 3.1 applies

kl
KW1
W1H1

: kl
KW2
W2H2

: kl
KW3
W3H3

(see Eq. (3))

KW1
W1K

: KW2
W2K

: KW3
W3K

¼ 1 : 1 : 1

∵ K is the same as P in this case
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5. Conclusions

In this paper, three techniques to statically balance a zero-free-length spring-loaded four-bar linkage were presented with the
motivation that these could be the starting point for the design of statically balanced systems involving inherent and possibly
more complex elastic loads. The only spring-load static balancing technique in the existing literature turned out to be a sub-
option of one of these techniques. While the current approach in literature involves extending static balance of a skew lever to
plagiograph, this paper's approach involves suitably composing the loading spring or its equivalent with another spring and
then balancing the resultant spring by introducing a parallelogram linkage. The number of additional links and springs required
for all these techniques is less than or equal to that of static balancing solution found in the existing literature. In terms of addi-
tional links that are added for balancing, a technique was singled out as the best since it does not require any auxiliary link. A pro-
totype demonstrating this option was made.

A more general problem, where choosing a four-bar linkage is also at the discretion of the designer, was also considered. This
led to a situation where the designer has to evaluate different options of the techniques presented in this paper on all cognates of
a four-bar linkage having a suitable coupler curve. In order to aid the designer to better visualize the balancing parameters of all
the cognates, a new parametrization of the family of all possible sets of balancing parameters of the three cognates was given
where (1) the triangle of anchor points of corresponding balancing springs of the three cognates could be visualized as scaled,
and/or rotated or translated copies of the cognate triangle, (2) the ratio with respect to each other of spring constants of the cor-
responding balancing springs of the three cognates is the same over the parametrization, and the ratio can be calculated from the
cognate triangle and the anchor point of loading spring. This was proved using elementary geometrical constructions. The result
may be seen as an extension of Roberts–Chebyshev cognate theory to static balancing.
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Appendix A. Proofs regarding finding focal pivot

Appendix A.1. If Ia, b and Ic, a circles are coincident, then the given lines a, b and c has to be concurrent

In the following proof, a, b, c, Ia,b and Ic, a refer to their original position, i.e., before rotation by β. Fig. 28 shows Ia,b and Ic, a cir-
cles that are coincident. Also shown are lines a and b and their intersection point Ia,b. Point Ic, a should lie on this circle since the
circle is its locus. By the definition of Ic, a as the intersection of c and a, it should also line on line a. Hence Ic, a should lie on the
intersection of the circle with the line a.

Since Ic, a and Ia,b circles, by definition pass through A and line a also by definition pass through A, A is always an intersection
point between the line and the circle. The following types of intersection between the circle and line a are possible:

1. When Ia,b is distinct from A, the line a intersects the circle at two distinct points: A and Ia,b, as shown in Fig. 28.
2. When Ia,b coincides with A, the line a has to be tangent to the circle at A. (see the theorem in Appendix B).

In the first possibility, Ic, a has to be either at Ia,b or at A. If it is at A, then line a has to be tangent to the circle (see the theorem in
Appendix B), which contradicts the earlier observation that line a intersects the circle at two distinct points. Hence, Ic, a cannot be
at A, and by elimination, it has to be at Ia,b. This implies that Ia,b and Ic, a coincide which further imply that a, b, and c are
concurrent.

b

AC

Ba

Coincident and circles

Before rotation (at = 0)

Fig. 28. Ia,b and Ic, a circles are coincident.
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In the second possibility, since A is the only intersection between line a and locus of Ic, a, Ic, a has be at A. Thus, here also both Ia,b
and Ic, a coincide implying concurrence of lines a, b and c.

Hence, if Ia,b and Ic, a circles are coincident, then the given lines a, b and c has to be concurrent.

Appendix A.2. When M and A are distinct, M is the focal pivot (Refer to Section 3.1.4 and Fig. 27)

Let rotation angle β be such that point Ia,b is at A, so that by the theorem in Appendix B, line b aligns along the segment AB and
line a becomes tangent to Ia,b circle. If for the same β, point Ic, a is also at A, then by the theorem in Appendix B, line a becomes
tangent to Ic, a circle. This implies that line a is a common tangent to both Ia,b and Ic, a circles at the A which is one of the two dis-
tinct points of intersection of the two circles. This contradicts the fact that for two circles intersecting at two distinct points, there
cannot be common tangent at the point of intersection. Hence there is no β for which both Ia,b and Ic, a are at A. Therefore A is not a
focal pivot.

Let rotation angle β be such that Ia,b is at M as shown in Fig. 29. It may further be seen that not only circle Ia,b but even line a
intersects the Ic, a circle at two distinct points: A and M. Since point Ic, a has to lie on both its locus Ic, a circle and on line a (by def-
inition), it should be at one of the intersection points (A or M) of the circle and the line.

If point Ic, a is at A, then by the theorem in Appendix B, line c aligns with CA and line a becomes tangent to Ic, a circle at A. This
contradicts the earlier noted fact that line a intersects at two distinct points. Hence, point Ic, a cannot be at A and by elimination of
choices, it has to be at M. Thus, for the angle of rotation β, both Ic, a and Ia,b lie on M. Therefore, M is a focal pivot.

Appendix B. An elementary theorem of geometry

The angles subtended by a chord of a circle on any two points on the circumference of the circle are the same when the points
are on the same side of the chord and are complement of each other when the points are on either side of the chord. The converse
of the theorem is as follows: If two non-parallel lines passing through two ends of a line segment are rotated equally about the
respective end-points of the segment, then the intersection point of the two lines traces a circle. The circle has the line segment
as its chord. During rotation, when the intersection point reaches one end of the chord, one of the lines will align with the chord
while the other becomes tangent to the circle.
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