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Perfect Static Balance of Linkages
by Addition of Springs But Not
Auxiliary Bodies
A linkage of rigid bodies under gravity loads can be statically counter-balanced by add-
ing compensating gravity loads. Similarly, gravity loads or spring loads can be counter-
balanced by adding springs. In the current literature, among the techniques that add
springs, some achieve perfect static balance while others achieve only approximate bal-
ance. Further, all of them add auxiliary bodies to the linkage in addition to springs. We
present a perfect static balancing technique that adds only springs but not auxiliary
bodies, in contrast to the existing techniques. This technique can counter-balance both
gravity loads and spring loads. The technique requires that every joint that connects two
bodies in the linkage be either a revolute joint or a spherical joint. Apart from this, the
linkage can have any number of bodies connected in any manner. In order to achieve
perfect balance, this technique requires that all the spring loads have the feature of zero-
free-length, as is the case with the existing techniques. This requirement is neither
impractical nor restrictive since the feature can be practically incorporated into any
normal spring either by modifying the spring or by adding another spring in parallel.
[DOI: 10.1115/1.4006521]

1 Introduction

A linkage is said to be statically balanced if it is in static equi-
librium in all its configurations. In this paper, all the loads on a
linkage are assumed to be conservative. Hence, static balance is
equivalent to invariance of the net potential energy of all the loads
with respect to all configurations of the linkage. This paper gives
a new technique to statically balance a revolute-jointed linkage
loaded by constant forces (e.g., gravity) and/or zero-free-length
springs. Although the technique is detailed in this paper for planar
linkages, it extends to spatial spherical and/or revolute-jointed
linkages.

The need for static balance of gravity loads in structures and
machines is well known. Hence, a number of techniques are
developed for static balance of gravity loads [1–4]. The need for
static balance of inherent spring loads is not as common. This
need is particularly felt in compliant mechanisms where an elasti-
cally deformable structure is used but its stiffness is not always
desired. This work is motivated by such practical applications.

Techniques in the literature for static balancing a loaded link-
age may be classified into approximate balancing techniques and
perfect balancing techniques. The perfect balancing techniques
can be further subdivided into

Category 1: Both original loads and balancing loads are con-
stant weights.

Category 2: Original loads are constant weights and balancing
loads are zero-free-length spring loads.

Category 3: Both original and balancing loads are zero-free-
length spring loads.

These categories are illustrated in Fig. 1. The top row of Fig. 1
shows these categories for a lever. While the static balance of a
lever in category 1 is known for a long time, the balancing of a
lever under categories 2 and 3 was discovered relatively recently,
as would be evident from the literature survey given later. The
bottom row of Fig. 1 shows these categories for a multibody link-
age. For multibody revolute-jointed linkages, static balancing

techniques are known only for categories 1 and 2. Furthermore,
for multibody linkages under category 2, beyond 3R serial link-
age, all the methods reported so far in the literature use auxiliary
bodies. The bottom row of Fig. 1 under category 2 illustrates one
such reported method [2] where auxiliary bodies are highlighted
in gray color.

This paper deals with perfect static balancing of multibody
revolute-jointed linkages. It shows that just as balancing under
category 1 can be done without auxiliary bodies, balancing under
categories 2 and 3 can also be done without using auxiliary
bodies. The background for this work is presented next.

1.1 Zero-Free-Length Springs and Perfect Static
Balancing. Zero-free-length springs, in contrast to normal
springs, have zero-length between its endpoints when the spring
force is zero. When a spring is anchored to two bodies having rel-
ative motion, the spring force as a function of its two anchor
points is of interest. As illustrated in Fig. 2, this function happens
to be linear in a zero-free-length spring but nonlinear in a posi-
tive-free-length spring inspite of both springs having a linear
force-deflection relationship. Appendix A shows that the nonli-
nearity associated with nonzero-free-length springs prevents

Fig. 1 Three categories of perfect static balancing techniques
shown on a lever and a multibody linkage
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perfect static-balance when only normally available positive-free-
length springs are present. Herder [5] has documented a few prac-
tical arrangements to decrease the free-length of a normal spring
all the way to zero and even to a negative value.

If a normal positive-free-length spring cannot be incorporated
into any of the arrangements of Herder [5], as is the case with
loading springs, then by adding an appropriate negative-free-
length spring in parallel to it, a zero-free-length spring can be real-
ized out of both of them. In this way, even normal spring loads
can be brought under the ambit of techniques under category 3.
Thus, the technique presented in this paper is practical and general
enough to handle normal spring loads in addition to weights and
zero-free-length spring loads.

1.2 Literature Survey

1.2.1 Perfect Static Balancing of a Lever. The three catego-
ries of perfect static balancing of a lever can be seen in Fig. 1.
The technique under category 1 is known from historic times and
is popularly known as the lever principle of Archimedes. The
discovery of zero-free-length springs and the technique under cat-
egory 2 are credited to Lucien LaCoste (see Ref. [1]). We consider
this discovery to be ground-breaking since it showed for the first
time that a weight can be statically balanced by a spring.
Recently, using a differential bevel gear, this technique is adapted
for static balancing a body having the spatial roll and pitch motion
about a point [6]. The techniques under category 3 for a lever are
discussed in detail by Herder [5].

1.2.2 Perfect Static Balancing of a Multibody Linkage. Most
of the static balancing techniques for multibody linkages under
category 1 have been known for a long time. The technique shown
in Fig. 1 under category 1 is one such. Another example of the
techniques under this category is in Ref. [7].

Under category 2, Streit and Shin [2] showed that in principle
any planar linkage loaded by gravity loads can be balanced using
zero-free-length springs. They also provided a different technique
to statically balance serial revolute-jointed planar linkages. It is
this technique that is illustrated using three-revolute-jointed link-
age in Fig. 1 under category 2. The same work also provides
another technique for a linkage with revolute-slider joint pairs.
Although Streit and Shin [2] provide techniques for planar link-
ages, the techniques can be extended to spatial linkages. Rahman
et al. [8] provide one such extension to anthropomorphic robots.
Recent work on static balancing of spatial linkages includes that
of Lin et al. [9]. References [3] and [4] provide a different class of
techniques under category 2 for revolute-jointed linkages. All
these techniques use auxiliary bodies in addition to extra zero-
free-length springs.

Under category 3, for a multibody linkage, there is a technique
which is applicable only for a four-bar linkage and a two-revo-

lute-jointed linkage [10]. Later, we recognized two more methods
for the same linkages in Ref. [11].

Under categories 2 and/or 3, Refs. [12] and [13] as well as a
method in Ref. [11] do not use auxiliary links. The current paper
has evolved out of Ref. [12] and allows a more general class of
solutions in comparison to Ref. [12]. Reference [13] derives equa-
tions governing static balance of gravity loaded 2R and 3R link-
ages and provides solutions to the equations without using
auxiliary links.

1.2.3 Other Static Balancing Techniques. Among the balanc-
ing techniques outside the ambit of the aforementioned three cate-
gories, most are approximate balancing techniques and a few,
although perfect balancing techniques using ordinary springs, use
cams and pulleys to modulate the behavior of springs. Further, all
those techniques balance against gravity loads. Agrawal and
Agrawal [14] presented an approximate static balancing method
using nonzero-free-length springs. Gopalswamy et al. [15] gave
an approximate static balancing technique where torsional springs
were used as balancing elements. There is a lot of literature on
static balancing of parallel manipulators and one such work is
Ref. [16]. The balancing techniques that modulate the behavior of
springs include the techniques in Refs. [17] and [18], where a pul-
ley of varying radius was used, and the technique in Ref. [19],
where a cam was used.

1.3 Practical Relevance. The utility of techniques under cat-
egory 2 is well recognized. These techniques are applied in static
balancing of robots, anglepoise lamps, and flight simulators. If a
robot or a flight simulator is statically balanced, then the actuators
do not have to work against the gravity loads acting on the links
of the robot or the cockpit of flight simulator. This greatly reduces
the force/torque requirement of the actuators and also supposedly
makes the actuator control easy. Further, an advantage of balanc-
ing techniques in category 2 over category 1 is that the inertia
added to the linkage is minimal. The new technique that this paper
presents under this category will provide one more option to a de-
signer seeking to statically balance linkages under gravity loads
using springs.

The utility of any technique under category 3 is not direct.
There are hardly any practical problems where a linkage under
zero-free-length springs is required to be statically balanced
against it. However, there are situations where a linkage under
elastic loads other than the zero-free-length spring loads is
required to be balanced. For example, the balancing of the elastic
forces of a cosmetic covering in a hand prosthesis (see Refs. [10]
and [20]) and the inherent elastic forces in a compliant mechanism
(see Ref. [21]) is desired. Unlike in a hand prosthesis, there is no
inherent linkage in a compliant mechanism, which is a monolithic
elastic piece that transmits force or motion by virtue of elastic de-
formation. However, it is established that compliant mechanisms
with flexural joints and certain kinds of slender segments can be
modeled as rigid-linkages with torsional springs and tension
springs (see Refs. [22] and [23]). Since the perfect static balance
of these types of elastic forces on linkages is not demonstrated,
one would look for a good approximate static balance. If such
elastic forces are approximately modeled as zero-free-length
springs, then the techniques under category 3 would offer insights
and also a starting point for optimization techniques to balance
such elastic loads.

1.4 Organization of the Paper. In order to show the features
of zero-free-length springs and constant loads that make perfect
static balance possible with them, perfect static balance of one of
the simplest linkages: a rigid body on a fulcrum, i.e. a lever, is dis-
cussed in Sec. 2. Section 3 shows that even though the principles
of static balance of a lever can be extended to a rigid body freely
moving in a plane, static balancing the translation component of
the rigid body is not possible in most practical conditions. Based
on a result in Sec. 3, it is shown in Sec. 4 that an assemblage of

Fig. 2 Difference between zero-free-length spring and normal
spring
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rigid bodies in a plane with zero-free-length spring and constant
load interactions between the bodies can always be statically
balanced if the assemblage forms a revolute-jointed linkage.
Section 5 argues that the technique for planar revolute-jointed
linkages extends for spatial spherical and/or revolute-jointed link-
ages. Concluding remarks are in Sec. 6.

2 Balancing a Lever

Consider a lever pivoted to the ground, as shown in Fig. 3. The
configuration of the lever with respect to the global frame of refer-
ence (X� Y) can be described by h, which is the angle from the
global frame to the local frame of reference of the lever.

Figure 3 also shows two kinds of load: (1) a spring attached
between a point of the lever and a point of the global frame and
(2) a constant force acting at a point on the lever. Here, a constant
force means that the force has a constant direction with respect to
the global frame and a constant magnitude. A complete specifica-
tion of the spring load would involve (1) the spring constant,
denoted by k, (2) the local coordinate of the anchor point on the
lever, denoted by a ¼ ½ax ay�T , and (3) the global coordinate of
the anchor point on the global reference frame, denoted by
b ¼ ½bx by�T . A complete specification of the constant force would
involve (1) the force components with respect to the global frame,
denoted by f ¼ fx fy

� �T
, and (2) the local coordinate of the point

of action of the force on the lever, denoted by p ¼ px py½ �T .

2.1 Potential Energy as a Function of the Configuration
Variable. By referring to Fig. 3, the potential energy of the con-
stant load is

PEc ¼ �f T r þ R hð Þpð Þ (1)

where r ¼ rx ry

� �T
is the coordinate of the origin of the local

frame on the lever with respect to the global frame and R is the
rotation matrix function given by

R wð Þ ¼ cos w � sin w
sin w cos w

� �
for any angle w (2)

The potential energy of the spring is

PEs ¼
k

2
l� l0ð Þ2¼ k

2
l2 � kl0lþ k

2
l20 (3)

where l0 is the free length of the spring and l is the magnitude of
d, the displacement of one-end point of the spring with respect to
the other. This d, referring to Fig. 3, is

d ¼ r þ R hð Það Þ � b (4)

Since l2¼ dTd, the potential energy in expression (3) may be
rewritten as

PEs ¼
k

2
dTd � kl0

ffiffiffiffiffiffiffiffi
dTd

p
þ k

2
l20 (5)

If the free-length of the spring is zero, then only the first term in
Eq. (5) remains and hence, we call it as PEs,zero, i.e.

PEs;zero ¼
k

2
dTd ¼ k

2
r þ R hð Það Þ � bð ÞT r þ R hð Það Þ � bð Þ

¼ k

2
ðrTr þ aTRTðhÞRðhÞaþ bTb� 2rTbþ 2rTRðhÞa

� 2bTRðhÞaÞ

¼ k

2
rTr þ aTaþ bTb� 2rTbþ 2rTRðhÞa� 2bTRðhÞa
� �
* RTðhÞRðhÞ ¼ I (6)

Since the remaining last two terms of the potential energy in
Eq. (5) are nonzero only if free-length l0 is nonzero, we name
these terms as PEs,nonzero, i.e.

PEs;nonzero ¼ �kl0
ffiffiffiffiffiffiffiffi
dTd

p
þ k

2
l2
0 (7)

From Eq. (6), it follows that dTd ¼ 2
k PEs;zero. Substituting this in

Eq. (7) leads to the following expression for PEs,nonzero.

PEs;nonzero ¼ �l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kPEs;zero

p
þ k

2
l2
0 (8)

In the expressions of the potential energy in Eqs. (1), (6), and (8),
as the configuration of the lever varies, f, p, a, b, k, l0 remain con-
stants and r is made a constant by choosing the origin of the local
frame on the lever to coincide with the pivot point. The depend-
ency of the expressions on the configuration is due the matrix R(h)
which, by examining the definition of R in Eq. (2), can be split as

RðhÞ ¼ 1 0

0 1

� �
cos hþ 0 �1

1 0

� �
sin h ¼ I cos hþ R

p
2

	 

sin h

(9)

This form of R(h) indicates that PEc in Eq. (1) and PEs,zero in
Eq. (6) can be written as a linear combination of sin h, cos h, and
1 (for constants). The coefficients of sin h, cos h and 1 are pre-
sented, for clarity, in a tabular form in Table 1. Thus, we now
have potential energy of constant and spring loads expressed as
functions of configuration variable h.

2.2 Invariance of Potential Energy With Respect to the
Configuration Variable

2.2.1 Trivial Conditions. The potential energy of the spring
on the lever can have constant potential energy only under trivial
conditions: (1) the spring stiffness is zero (k¼ 0), (2) the anchor
point on the lever is at the hinge point (a¼ 0), and (3) the anchor
point on the global frame is at the hinge point (b¼ r). Similar triv-
ial conditions for the constant loads are (1) the load is zero (f¼ 0)
and (2) the load acts at the pivot point (p¼ 0). It is only under
these trivial conditions that the coefficients of cos h and sin h
become zero in Table 1.

2.2.2 The Discovery of Lucien LaCoste. Even though a non-
trivial spring and a nontrivial constant load cannot be individually
in static balance, they together can be, as demonstrated in Fig. 4.
This was first recognized by Lucien LaCoste (see Ref. [1]) in the
context of having a pendulum of infinite period. Figure 4 shows a
lever under the action of a weight W that is balanced by a zero-

Fig. 3 A lever under a constant load and a spring load
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free-length spring of spring constant k anchored above the pivot
of the lever at a height of h. As shown in the figure, under the con-
dition W¼ kh, the potential energy is invariant with respect to
configuration variable h.

2.2.3 Several Zero-Free-Length Springs and Constant
Loads. The balancing condition W¼ kh of the example in Fig. 4
will now be generalized to a lever under several constant loads
and zero-free-length spring loads. Since several loads are now
being considered, let both constant loads and zero-free-length
spring loads be ordered to allow indexing. The notation ai, bi, ki,
has the same meaning as a, b, and k in Fig. 3 other than that it cor-
responds to ith spring. fi and pi also have similar meaning. Fur-
ther, let the number of constant loads be nc and the number of
zero-free-length spring loads be ns.

Since the potential energy of each of the constant loads and the
zero-free-length spring loads are a linear combination of cos h, sin
h and 1, their net potential energy is also a linear combination of
cos h, sin h and 1. Further, since cos h and sin h and 1 are linearly
independent functions of h, their linear combination is a constant
if and only if the coefficients of nonconstant functions, i.e., cos h
and sin h are zero. Writing, with the help of Table 1, the coeffi-
cients of cos h and sin h of the net potential energy of all the loads
and equating them to zero lead to the following equations:

�
Xnc

i¼1

fy;ipy;i þ fx;ipx;i

� �
þ
Xns

i¼1

ki ay;iry þ ax;irx � ay;iby;i � ax;ibx;i

� �
¼ 0 (10)

Xnc

i¼1

fx;ipy;i � fy;ipx;i

� �
þ
Xns

i¼1

kiðax;iry � ay;irx � ax;iby;i þ ay;ibx;iÞ ¼ 0 (11)

which are the conditions for constant potential energy (or static
balance) of several constant and zero-free-length spring loads on a
lever. These conditions are applicable to all the three categories of
Fig. 1. Further, by choosing appropriate load parameters, it is pos-
sible to satisfy the conditions in practice, as was the case in the
example of Fig. 4.

2.2.4 Normal Positive-Free-Length Springs. As far as nor-
mally available positive-free-length springs are concerned, the
square root term in Eq. (8) poses a severe restriction on static
balancing, as explained in detail in Appendix A. Hence, for the
remainder of this paper, all the spring loads are of zero-free-length
with the understanding that a positive-free-length spring can be
brought into the ambit of zero-free-length by combining it with an
appropriate negative-free-length spring.

Our next aim is to derive a set of conditions for the static bal-
ance of a revolute-jointed multibody linkage loaded by constant
loads and zero-free-length spring loads. Before that, it is useful to
consider the static balance of a single rigid body moving freely in
a plane.

3 Balancing of a Rigid Body in a Plane

Consider the rigid body shown in Fig. 3. An appropriate set of
configuration variables for the body is fr,hg. It may be noted that
r in Fig. 5, in contrast to Fig. 3, is an independent variable
because the body is free to move in the plane.

The loads on the body are a set of zero-free-length spring loads
and constant loads, and both sets of loads are exerted by the global
frame of reference as shown in Fig. 5. The notations nc, ns, ai, bi,
ki, fi, and pi have the same meaning as in Sec. 2. The potential
energy of the loads is also the same as in Sec. 2 except that rx and
ry are now independent variables. In Table 1 of Sec. 2, when line-
arly independent functions of fr,hg are pulled out as basis func-
tions, Table 2 is obtained. As is evident from Table 2, the
potential energy of the loads is now a linear combination of the
following basis functions: cos h, sin h, rx cos h, ry cos h, rx sin h,
ry sin h, r2

x , r2
y , rx, ry, and 1.

Table 1 Potential energy of the weight and the zero-free-length component of the spring acting on the lever is a linear combination
of cos h, sin h, and 1.

Coefficients

Basis Weight Zero-free-length component of spring load

cos h � fTp¼�(fypyþ fxpx) k(r� b)Ta¼ k(ayryþ axrx� ayby� axbx)

sin h �f TR p
2

� �
p ¼ ðfxpy � fypxÞ k r � bð ÞTR p

2

� �
a ¼ kðaxry � ayrx � axby þ aybxÞ

1 � fTr¼�fyry� fxrx þ k
2

rTr þ aTaþ bTb� 2rTb
� �

¼ þ k
2
ðr2

y � 2byry þ r2
x � 2bxrx þ b2

y þ b2
x þ a2

y þ a2
xÞ

Fig. 4 Static balancing of a weight by a spring Fig. 5 A body that is free to move in a plane
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The net potential energy of nc constant loads and ns spring loads
is also a linear combinations of the same basis functions. Further-
more, cos h, sin h, rx cos h, ry cos h, rx sin h, ry sin h, r2

x , r2
y , rx, ry,

and 1 are linearly independent functions of fr,hg. Hence, from a
reasoning similar to the one in Sec. 2, for the net potential energy
to be independent of the configuration variables, the coefficients
of all the basis functions other than 1 have to be zero. However, it
is not practical to make the coefficients of all these functions as
zeros because of the following reasons:

• There are only gravity loads: Gravity is the most important
practically seen instance of a constant load. When all the con-
stant loads are gravity loads, fi¼migi, where mi is the mass
and g is the acceleration due to gravity. Further, the coeffi-

cient of rx and ry become �gx

Png

i¼1 mi

� �
and �gy

Png

i¼1 mi

� �
.

Since mi> 0, 8i,
Png

i¼1 mi > 0. Also, since the acceleration
due to gravity is nonzero, both gx and gy cannot be zero.
Hence, the coefficients of both rx and ry cannot be zero.

• There are zero-free-length spring loads, possibly with gravity

loads: In this case, the coefficients of both r2
x and r2

y arePns

i¼1 ki. Since the spring constants of all the springs consid-

ered here are positive, (ki> 0, 8i),
Pns

i¼1 ki cannot be zero.

Hence, the coefficients of r2
x and r2

y cannot be zero.

However, as shown in Appendix B.1, there is no such practical
difficulty in making the coefficients of all h-dependent functions,
i.e., cos h, sin h, rx cos h, ry cos h, rx sin h, and ry sin h as zero.
Setting h-dependent terms to zero amounts to the following set of
independent constraints:

�
Xnc

i¼1

ðfy;ipy;i þ fx;ipx;iÞ
� �

�
Xns

i¼1

kiðay;iby;i þ ax;ibx;iÞ
� �

¼ 0 (12)

þ
Xnc

i¼1

ðfx;ipy;i � fy;ipx;iÞ
� �

�
Xns

i¼1

kiðax;iby;i � ay;ibx;iÞ
� �

¼ 0 (13)

Xns

i¼1

kiaið Þ ¼ 0 (14)

It is shown in Appendix B.1 that if these constraints are not satis-
fied by the loads, then by adding not more than two zero-free-
length springs, these constraints can be satisfied. A numerical
example to demonstrate the same is given in Fig. 6.

Inspite of being able to make the potential energy of the loads
on the link independent of h, the dependency on r still remains.
In Sec. 4, we show that if the body is joined to an appropriate
linkage, then by adding extra loads to other parts of the linkage,
the r-dependent terms of the potential energy can be balance out.

Before we proceed to Sec. 4, it may be noted that the potential
energy of a constant load or a zero-free-length spring load falls
under the following general form:

U ¼ rTuþ jrTr þ rTR hð Þvþ wTR hð Þqþ c (15)

where h and r are the configuration variables of the rigid body on
which the load acts. In the case of constant loads, by comparing
Eq. (1) with Eq. (15), we have

u ¼ �f ; j ¼ 0; v ¼ 0; w ¼ �f ; q ¼ p; and c ¼ 0

(16)

and in the case of zero-free-length spring loads, by comparing
Eqs. (6) and (15), we have

Table 2 Potential energy of weight and spring acting on a link moving in a plane.

Coefficients of the basis

Basis Weight Spring load Generalized potential (see Eq. (15)

cos h �(fypyþ fxpx) �k(aybyþ axbx) (qywyþ qxwx)

sin h þ(fxpy� fypx) �k(axby� aybx) (qxwy� qywx)

rx cos h 0 kax vx

ry cos h 0 kay vy

rx sin h 0 �kay �vy

ry sin h 0 kax vx

r2
x 0 k

2
j

r2
y 0 k

2
j

rx �fx �kbx ux

ry �fy �kby uy

1 0 þ k
2
ða2

x þ a2
y þ b2

x þ b2
yÞ c

Fig. 6 A rigid body moving freely in a plane under a constant load is made to have
h-independent potential energy by addition of two zero-free-length springs
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u ¼ �kb; j ¼ k

2
; v ¼ ka; w ¼ �b;

q ¼ ka; and c ¼ k

2
bTbþ aTa
� �

(17)

Later in the paper, we encounter potential energy functions that
are of the form given in Eq. (15), but they cannot be attributed to
zero-free-length spring loads or constant loads acting on the body.
Hence, there is a need to generalize constraints (10)–(14) to the
form given in Eq. (15). Such a generalization is possible because
as can be seen in the last column of Table 2, the potential given in
Eq. (15) is a linear combination of the basis functions given in
Table 2 just as in the case of constant and zero-free-length spring
loads. The following proposition states the generalization.

Proposition 3.1. If there are n functions of the form

Ui ¼ rTui þ jir
Tr þ rTR hð Þvi þ wT

i R hð Þqi þ ci; i ¼ 1 � � � n
(18)

with r and h as the variables, then
Pn

i¼1 Ui is independent of h if
and only if the following constraints are satisfied:

Xn

i¼1

qy;iwy;i þ qx;iwx;i

� �
¼ 0 (19)

Xn

i¼1

qx;iwy;i � qy;iwx;i

� �
¼ 0 (20)

Xn

i¼1

vi ¼ 0 (21)

When these constraints are satisfied,
Pn

i¼1 Ui depends only on r in
the following form:

Xn

i¼1

Ui ¼
Xn

i¼1

rTui þ jir
Tr þ ci

� �
¼ rT
� �Xn

i¼1

ui þ rTr
� �Xn

i¼1

ji þ
Xn

i¼1

ci (22)

Furthermore, if r happens to be a constant (as in a lever) with only
h being the variable, then

Pn
i¼1 Ui is independent of h (and hence

a constant) if and only if the following constraints are satisfied:

Xn

i¼1

vy;iry þ vx;irx þ qy;iwy;i þ qx;iwx;i

� �
¼ 0 (23)

Xn

i¼1

vx;iry � vy;irx þ qx;iwy;i � qy;iwx;i

� �
¼ 0 (24)

Proof. The proof is along the same lines as the derivation of
Eqs. (10)–(14).

It may be noted that inspite of considering a general form of
potential in Eq. (18), the inability to make the net potential energy
independent of r remains because of the following reason. In all
the cases that we consider next, ji� 0 and ji> 0 for atleast one
value of i. Hence, the r-dependent term,

Pn
i¼1 jir

Tr, cannot be
zero in the expression for

Pn
i¼1 Ui.

4 New Static Balancing Techniques for

Revolute-Jointed Linkages

If there is a single rigid body with loads exerted by a reference
frame, then the net potential energy of the loads depends on the

configuration of the body with respect to the reference frame. If
there are several such bodies, then the net potential energy of all
the loads on all the bodies depends on the configuration of all the
bodies. This dependency on the configuration of all the bodies can
be reduced to that of a single body provided the bodies are con-
nected by revolute joints (to begin with, say, in a serial or a tree-
structured manner) and the loads are zero-free-length spring loads
and constant loads. If this single body is the reference frame itself,
then the net potential energy is a constant (implying static bal-
ance) since the configuration of the reference frame with respect
to itself is always fixed. This result follows as a consequence of
the proposition that is presented next.

4.1 The Potential Energy of Loads on a Body Transformed
as a Function of Another Body. We are now considering several
rigid bodies, each of them with its own r, h, nc, ns, ai, bi, ki, pi, etc.
To distinguish these quantities belonging to different rigid bodies,
we number the rigid bodies and put the number as a superscript to
these symbols. Hence r, h, nc, ns, ai, bi, ki, pi, and fi of body j are
now represented as rj, hj, nj

c, nj
s, a

j
i, b

j
i, kj

i, p
j
i, etc.

Proposition 4.1. The net sum of a set of functions of the config-
uration variables of a body l in the form given in Eq. (15), i.e.

Ul
i ¼ rlT ul

i þ jl
ir

lT

rl þ rlT R hl
� �

vl
i þ wlT

i R hl
� �

ql
i þ cl

i; i ¼ 1 � � � nl

(25)

can be expressed as a function of the same form but of body j, i.e.

Xnl

i¼1

Ul
i ¼ Uj

i ¼ rjT

u
j
i þ jj

ir
jT rj þ rjT

R hj
� �

v
j
i þ w

jT

i R hj
� �

ql
i þ cj

i

(26)

provided the following conditions are satisfied:

Condition 1: There is a point that is rigidly fixed to both body l
and body j. Such a point is called as a common
point of bodies l and j.

Condition 2: The origin of the local coordinate frame of body l
is at the common point.

Condition 3: The sum of the set of functions of body l is de-
pendent only on r in the form given in Eq. (22).

Proof. Let the local coordinate of the common point required
by condition 1 in body l be sl

j and in body j be s
j
l. The commonal-

ity of the point can be written as follows:

rl þ R hl
� �

sl
j ¼ rj þ R hj

� �
s

j
l (27)

Condition 2 implies that sl
j ¼ 0. Substituting sl

j ¼ 0 into Eq. (27)
leads to

rl ¼ rj þ R hj
� �

s
j
l (28)

Condition 3 implies that the sum of the set of functions of body l
can be written as

Xnl

i¼1

Ul
i ¼ rlT

Xnl

i¼1

ul
i þ rlT rl
	 
Xnl

i¼1

jl
i (29)

The constant term is omitted in Eq. (29) since it is inconsequential
for the discussion.

Substitution of rl from Eq. (28) into Eq. (29) and simplification
using the fact that RT(h)R(h) is identity lead to the following
expression for

Pnl

i¼1 Ul
i:
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rjT
Xnl

i¼1

ul
i

 !zfflfflfflfflfflffl}|fflfflfflfflfflffl{uj
i

þ rjT rj
Xnl

i¼1

jl
i

 !zfflfflfflfflfflffl}|fflfflfflfflfflffl{jj
i

þ rjT

R hj
� �

2sj
l

Xnl

i¼1

jl
i

 !zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{vj
i

þ
Xnl

i¼1

ul
i

 !T
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{wjT

i

R hj
� �

s
j
l

	 
zffl}|ffl{qj
i

¼
Xnl

i¼1

Ul
i ¼ Uj

i (30)

Again, the constant term is omitted in Eq. (30). It may be readily
recognized that the sum of the set of functions on body l,

Pnl

i¼1 Ul
i,

as seen in Eq. (30) is indeed of the form given in Eq. (26).

4.2 Proposition 4.1 as the Recursive Relation of an
Iterative Static Balancing Algorithm. We now show that
Proposition 4.1 can be treated as a recursive relation that can be
incorporated into an iterative procedure to achieve static balance
of a linkage. For the purpose of this section, we restrict the linkage
on which the iterative procedure can be applied to have the fol-
lowing features:

(1) The linkage should be tree-structured (i.e., no closed loops).
This feature is necessary since a recursive relation requires
a tree-structure to propagate.

(2) All the joints of the tree-structure should be revolute joints.
This feature is necessary to satisfy condition 1 of Proposi-
tion 4.1.

(3) We want all the loads to have potential energy functions of
the form given in Eq. (25) of Proposition 4.1. While we
know that zero-free-length springs and constant loads do
have this form (see Eqs. (16) and (17)), the fact that there are
several bodies involved requires attention. The configura-
tion variables (rl,hl) of different bodies (i.e., of different l)
should be with respect to a common global frame of refer-
ence. Hence constant loads on all the bodies should be con-
stant with respect to a common global reference frame and
any zero-free-length spring should have its one anchor point
on the same common global frame while the other anchor
point can be on any of the bodies constituting the linkage.

(4) The common reference frame should be one of the bodies
of the linkage, i.e., it should join to body/bodies of the link-
age by revolute joint/joints.

4.2.1 The Iterative Static Balancing Algorithm. We now
present the iterative algorithm and prove that it leads to static
balance.

Preparatory Steps

(1) Assign the reference body as the root node of the tree-
structure (bodies are represented as nodes and joints as lines
joining the nodes). With this assignment, for every link/
body other than the root, there is a parent body. Further, ev-
ery link other than a terminal link has one or more children.

(2) Choose a local frame of reference on every link to coincide
with the center of revolute joint between the link and its
parent. For every link k, rk and hk decide the configuration
of its local frame with respect the frame of the root.

(3) Give this tree-structure with the given constant and zero-
free-length spring loads (together referred to as original
loads) as an input to the following iterative procedure.

Iterative Procedure. Entry condition: If the tree-structure con-
tains only the root node, then exit from the iterative procedure.
Otherwise, proceed to step 1.

Step 1: Any terminal node l, has associated with it the following
three kinds of potential energy functions: (1) due to original loads
on body l, (2) due to association that happened in step 3 of previ-
ous iterations, and (3) additional loads on body l. Let the number
of such functions be represented by nl

o, nl
c, nl

a, respectively. The

first two kinds of functions are known from the given problem and
previous iterations, respectively, and the task in this step is to find
the additional loads so that

Case (a): Equations (19)–(21) are satisfied if l is not a child
(i.e., not first generation descendant) of the root.

Case (b): Equations (23)–(24) are satisfied if l is a child of the
root. Note that in this case rl is a constant because of the way local
frame is chosen in the preparatory steps.

This task makes sense only if the all kinds of potential energy
functions fall under the form of Eq. (15) with (r, h) being (rl, hl).
The first and the third kind of potential energy functions do fall
under the form because of the kind of loads we are restricting to
(see Eqs. (16) and (17)). The second kind of potential energy
functions conform to the form because of step 2 which is a direct
consequence of Proposition 4.1. The critical role of Proposition
4.1 in enabling this iterative procedure may be noted. Further,
Appendix B.2 asserts that the task of this step is always feasible.
It may be noted that there are several set of additional loads that
satisfy these equations. This nonuniqueness calls for discretion of
the designer in choosing a suitable set of additional loads.

Step 2: In case (a), express
Pnl

oþnl
cþnl

a

i¼1 Ul
i in the form given in

Eq. (15) where r and h are the configuration variables of the par-
ent of node l. This is possible since condition 1 (because of revo-
lute joint), condition 2 (because of preparatory steps) and
condition 3 (because of step 1) of Proposition 4.1 are satisfied. In

case (b), recognize that
Pnl

oþnl
cþnl

a

i¼1 Ul
i is a constant as per Proposi-

tion 3.1.
Step 3: Associate

Pnl
oþnl

cþnl
a

i¼1 Ul
i with the parent link of l and for

energy conservation, disassociate Ul
i, i ¼ 1 � � � nl

o þ nl
c þ nl

a from
node l. Because of this association, n

pðlÞ
c (pðlÞ denotes parent node

of l, and nk
c denotes the number of potential energy functions asso-

ciated with node k so far at step 3) gets incremented by one and
the associated function can be written as

UpðlÞ
nc
¼

Xnl
oþnl

cþnl
a

i¼1

Ul
i (31)

Step 4: With all potential energy functions “robed” from node l to
its parent, delete this terminal node l.

Iterator: Once steps 1–4 are completed, a new trimmed tree-
structure results where the parents of the nodes deleted in step 4
has additional potential energy functions associated with them.
Follow this iterative procedure again with this trimmed tree-
structure as the input.

With every iteration, the tree-structure shrinks and it eventually
gets reduced to the single root node. Any of the n0

c potential
energy functions (of the second kind) associated with this reduced
root is from one of the children of the root. As per step 1, this
association is through case (b). Any function associated through
case (b) is a constant as recognized in step 2. Thus, the sum of
these n0

c potential energy functions is also constant. Further, the
sum of these n0

c potential energy functions is actually the sum
potential energy of original loads and additional loads on all the
descendants of the root. This can be verified by recursive substitu-
tion in Eq. (31) as exemplified in Eq. (32). Therefore, the original
loads are in static balance with the additional loads.

Illustration of the algorithm on a 4R linkage under constant
loads: Figure 7 shows a 4R linkage where four revolute joints con-
nect the ground and four other bodies serially. The ground exerts
constant gravitational force on each of the four bodies. Hence we
take the ground as the root and number the bodies accordingly as
shown in Fig. 7(b). The local frame of reference are located on
each of the bodies as per the preparatory step 2. The constant
loads on bodies 1–4 are represented as C1

1, C2
1, C3

1, and C4
1, respec-

tively. Their details (point of action p and force vector f) are pre-
sented in item number 1, 4, 7, and 10 of the table in Fig. 7.

Now we give the tree-structure to the iterative procedure. The
terminal node of the tree is 4. There is a potential energy function
associated with the node due to C4

1 which is represented as
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U4
1 C4

1

� �
. There is no potential energy function of the second kind

ðn4
c ¼ 0Þ. Two zero-free-length springs Z4

1 and Z4
2 are added

so that the functions U4
1 C4

1

� �
, U4

2 Z4
1

� �
, and U4

3 C4
2

� �
satisfy

Eqs. (19)–(21) as per case (a) of step 1. All the details of the
springs, constant loads as well as their potential energy in the
standard form (see Eq. (15)) are presented in the table of Fig. 7.
Now, as per step 2, the sum of U4

1 C4
1

� �
, U4

2 Z4
1

� �
, and U4

3 Z4
2

� �
is

transformed as a U3
2ðr3; h3Þ in accordance with Eq. (30) of Propo-

sition (4.1). This is followed by making of a new tree-structure by
deleting node 4 and associating U3

2 with node 3 of the new tree-
structure. This completes the first iteration. The second iteration
acts on the new tree-structure. The table in Fig. 7 and Fig. 7(a)
give all the details of all the iterations. At the end of four itera-
tions we are left with a single root node having constant function
U0

1 associated with it. By following the dashed arrowed line of the
Fig. 7(a) in the reverse order, it may be verified that

U0
1 ¼ U1

1 C1
1

� �
þ U2

1 C2
1

� �
þ U3

1 C3
1

� �
þ U4

1 C4
1

� �
þ U4

2 Z4
1

� �
þ U4

3 Z4
2

� �
þ U3

3 Z3
1

� �
þ U2

3 Z2
1

� �
(32)

Hence C4
1, C3

1, C2
1, and C1

1 are in static balance with Z4
1, Z4

2, Z3
1,

and Z2
1.

To verify the static balance, this linkage along with the loads
was modeled in ADAMS. With zero damping, a pulse of energy
was initially introduced to the system. When the dynamic simula-
tion of the system was carried out it was noticed that the net ki-
netic energy was constant over time. This implies that there was
no potential gradient along the path that the linkage took in the
dynamic simulation.

In Fig. 7(c), joint 1 and body 1 are eliminated to modify this 4R
example into a 3R example. Joint 2 now joins body 2 with the

ground at r2 ¼ 0
5
32

� �
. Rest of the bodies and their numbering is

unchanged. The first two iterations for this example are identical
to the 4R example. The third iteration is the last since node 2 now
is a child of the root. As required at this iteration, it may be veri-

fied that Eqs. (23) and (24) are satisfied with r2 ¼ 0
5

32

� �
. One can

have a similar modification of 4R example into a 2R example as
shown in Fig. 7(d).

Fig. 7 Details of statically balanced gravity loaded 4R linkage and its modification into 3R
and 2R linkage.
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Illustration of the algorithm on a 2R linkage under a zero-free-
length spring load: Just as Fig. 7 has every detail of the 4R exam-
ple, Fig. 8 has every detail of this example. The explanation is
also along the same lines of the previous example. In this exam-

ple, the given original load is Z2
1 and the balancing loads are Z2

2

and Z2
3.

To buttress the fact that zero-free-length springs are practical, a
prototype of this example was made, as shown in Fig. 8(b). To

Fig. 8 Details of static balance of a 2R linkage under spring load

Fig. 9 Details of static balance of a 4R tree-structure linkage under a constant load and a
spring load
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realize zero-free-length springs, pulley-string arrangement was
used, the details of which can be found in Herder [5].

Illustration of the algorithm on a 4R tree-structure linkage
under both constant load and zero-free-length spring load: While
the previous two examples had serial architecture, this example
has branches emanating form the same node, as shown in
Fig. 9(a). The original loads acting on it are C3

1 and Z4
1. Instead of

taking original loads to be exclusively constant loads or exclu-
sively zero-free-length spring loads, here we have taken a combi-
nation of both types of loads. These original loads are balanced by
adding springs Z3

1, Z3
2, Z4

2, Z2
1, and Z1

1 at various iterations in the
iterative algorithm. A pictorial depiction of the iterations on these
linkages is given in Fig. 9(b). All the remaining details are given
in the table of the same figure.

To verify the static balance, h s of bodies 1–4 are varied in the

following form: h1¼ p
4
þpsin 2ptð Þ, h2¼ p

12
þpsin 2ptð Þ, h3¼ p

1:7

þpsin 2ptð Þ, h4¼ p
1:3þpsin 2ptð Þ. The potential energy variation

of original loads C3
1 and Z4

1 as well as the balancing loads, i.e.,

Z3
1, Z3

2, Z4
2, Z2

1, and Z1
1, are plotted in Fig. 10. The sum of all

these variations is also plotted and it has turned out to be a con-
stant. This verifies the static balance.

4.3 Static Balancing of Any Revolute-Jointed Linkages
With Any Kind of Zero-Free-Length Spring and Constant
Load Interaction Within the Linkage. In the static balancing
method for linkages provided in Sec. 4.2, other than the fact that
the linkage to be balanced has to be revolute-jointed and that load
interactions are of zero-free-length spring or constant loads, there
were two more restrictions as follows:

(1) It should be possible to consider that the loads on all the
bodies are exerted by a common reference body (or frame)
of the linkage.

(2) The linkage should have a tree-structure (i.e., without
closed loops).

When the first restriction is violated as in Fig. 11(a), it is always
possible to break the load interactions into a superposition of sev-
eral load sets with each set complying to the first restriction. For
example, the load interaction in Fig. 11(a) is broken into two load
sets in Figs. 11(b) and 11(c). The reference body in each of these
sets is indicated by an asterisk symbol (*) in its respective figure.
Furthermore, in a load set, if there are closed loops, then the
closed loops can be broken by relaxing certain joint constraints.
Figures 11(c) and 11(d) illustrates breaking of closed loops
respectively in Figs. 11(b) and 11(c). With closed loops broken,
each of the load sets comply with the two restrictions and they can
be statically balanced by adding balancing loads as per Sec. 4.2.

Once each of the load sets is balanced, the joint constraints that
were relaxed for breaking closed loops can be reimposed without
disturbing the static balance. In other words, when the potential
energy that is a function of the configuration space is a constant, it
remains as the constant even when the configuration space is re-
stricted (due to re-attachment of the broken joints).

Once the constraints are reimposed, the linkages in all the load
sets are the same as the original linkage and the loads on all the
sets can be superposed. Since each load set is in static balance, the
superposition is also in static balance. In other words, the sum of
several constant potential energy functions due to several load
sets is also a constant. This superposition contains all the original
loads on the given linkage. The remnant loads in this superposi-
tion are the additional loads that balance the original loads. In this
way, additional loads that statically balance any revolute-jointed
linkage with zero-free-length spring and constant load interactions
between the bodies of the linkage can always be found.

5 Static Balance of Spatial Linkages Having

Zero-Free-Length Spring and Constant Load

Interactions Within the Linkage

The static balancing technique of Sec. 4 was based on Proposi-
tion 4.1, which was presented for two planar bodies, with the rev-
olute joints only serving to satisfy the condition 1 of the
proposition. We can have analogous static balancing technique for
spherical and revolute-jointed spatial linkages with zero-free-
length spring and constant load interactions between the bodies of
the linkage provided that

(1) the potential energy for zero-free-length spring and con-
stant loads has the same form as given in Eq. (25),

(2) Proposition 4.1 is true even if the two bodies (l and j) are
free to move in space,

(3) spherical and revolute joints ensure condition 1 of Proposi-
tion 4.1, and

(4) analogous to constraints (19)–(21) which enable satisfying
condition 3 of the Proposition 4.1, there are constraint
equations for spatial case that a body can satisfy in practice,
possibly by addition of extra zero-free-length spring loads.

The first one is true since in the derivation of the potential
energy of constant loads in Eq. (1) and zero-free-length spring
loads in Eq. (6) would require no modification even if r were to be
considered as a spatial global coordinate (3� 1 matrix), a, b, p
were to be considered as spatial local coordinates, and R(h) were
to be considered as the spatial rotation matrix of the bodies with h
possibly representing Euler angles. That RTR is the identity

Fig. 10 Potential Energy variation of spring loads, constant
loads, and their sum

Fig. 11 Breaking a problem as a superposition of several prob-
lem with each problem being static balance of revolute-jointed
tree-structured linkage with loads exerted by the root body
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matrix, which was used in the derivation, is true in the spatial case
also.

The second one is true since Proposition 4.1 relies on Eq. (27),
that RTR is the identity matrix, and matrix-algebraic manipula-
tions. All of them are valid in the spatial case also.

The third one is true since a spherical joint ensures a common
point between the two bodies it joins and a revolute joint ensures
a common line between the two bodies it joins.

In the fourth one, the constraints (19)–(21) were obtained by
expressing the potential energy as a linear combination of a set of
basis functions involving r and h and setting the coefficient of h-
dependent basis functions to zero. In a similar vein, in the spatial
case also, the potential energy would be a linear combination of a
set of basis functions involving r and rotation defining, say, Euler
angles. By setting the coefficients of Euler angle-dependent terms
to zero, the analogous spatial constraints can be obtained. The
claim that we are not substantiating in this paper, for the sake of
brevity, is that these analogous constraint equations can also be
satisfied in practice, if necessary with the addition of extra zero-
free-length springs.

Thus, the static balancing technique presented in the paper for
revolute-jointed planar linkages extends to spherical and revolute-
jointed spatial linkages.

6 Conclusion

We presented a technique to statically balance any planar
revolute-jointed linkage having zero-free-length spring and con-
stant load interactions between the bodies of the linkage. The
technique involves only addition of zero-free-length springs but
not any extra link, unlike spring-aided perfect static balancing
techniques currently in the literature. The technique extends to
spatial spherical and revolute-jointed linkages as well. The tech-
nique relies on a recursive relation to iteratively remove the de-
pendence of the potential energy on the configuration variables of
the bodies of the linkage. Recognizing the recursive relation along
with the minimal conditions that enable it constitutes the main
contribution of this paper.

Appendix A: Perfect Static Balance and

Positive-Free-Length Springs

This is an appendix to Sec. 2. Here, the difficulty in achieving
perfect static balance of a lever by using normally available posi-
tive-free-length springs is discussed.

The dTd term in the potential energy expression of a spring
given in Eq. (5) was seen to be a linear combination of sin h, cos
h and 1 when expanded as in Eq. (6). Hence, by writing dTd as a
sin h þb cos hþ c, the potential energy expression of the spring
becomes:

k

2
a sin hþ b cos hþ cð Þ � kl0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a sin hþ b cos hþ cð Þ

p
þ k

2
l2
0

� 
(33)

The first term in Eq. (33) is the zero-free-length part and the sec-
ond term is the free-length part. If the free-length is positive, i.e.,
l0> 0, then the free-length part is negative. The free-length part of
the spring is nonconstant (i.e., k= 0 and not both a and b is zero)
except for trivial situations where spring constant is zero or the
spring is attached to the pivot of the lever. When there are several
but finite positive-free-length and nontrivial springs, the net con-
tribution of the free-length part is negative, and it is also not
known have the possibility of being a constant, unlike the zero-
free-length part. Furthermore, the free-length part is also not
known to be in the function space spanned by sin h and cos h.
Hence, the possibility of free-length part cancelling (modulo a

constant) with zero-free-length part is also ruled out. Thus, with
several positive-free-length springs, there is no way the net poten-
tial energy could become a constant.

Appendix B: Constraints Can be Satisfied, If Not as It

Is, by Addition of Extra Zero-Free-Length Spring

Loads

Appendix B.1: Satisfying Constraints (12)–(14). This appen-
dix demonstrates how by adding extra zero-free-length spring
loads constraints (12)–(14) can be satisfied. To differentiate
between original loads and balancing loads, let ns,o and ns,b

respectively represent the number of original and balancing zero-
free-length spring loads with ns,oþ ns,b¼ ns. Also, let the spring
loads be indexed such that the first ns,o loads are original loads
with the remaining being balancing loads. Similar meaning
applies for nc,o and nc,b.

Case 1: Original loads violate the constraint (14), and balancing
loads are only zero-free-length springs. Let us try to satisfy all the
constraints by adding a single zero-free-length spring. As per the
notation, this spring gets the index i¼ ns,oþ 1. The constraint (14)
can be written as follows:

kns;oþ1ans;oþ1 ¼ �
Xns;o

i¼1

kiai (34)

where the known quantities related to original loads are on the
right hand side. Equation (34) gives the unique solution of kiai for
i¼ ns,oþ 1 to the constraint (14). Furthermore, the constraints
(12) and (13) can be rewritten as

kiax;i kiay;i

�kiay;i kiax;i

� �
bx;i

by;i

� �� 
i¼ns;oþ1

¼
�
Xnc

i¼1

ðfyi
py;i þ fx;ipx;iÞ

� �
�
Xns;o

i¼1

kiðay;iby;i þ ax;ibx;iÞ
� �

þ
Xnc

i¼1

ðfx;ipy;i � fy;ipx;iÞ
� �

�
Xns;o

i¼1

kiðax;iby;i � ay;ibx;iÞ
� �

2
66664

3
77775

(35)

The 2� 2 matrix on the left hand side of the equations is known
since kiai for i¼ ns,oþ 1 is already solved in Eq. (34). Further-
more, the matrix is nonsingular since the right hand side of
Eq. (34) that is the same as kns,oþ 1ans,oþ 1 is nonzero as per the
description this case. We take bx;i by;i½ �T for i¼ ns,oþ 1 as the
inverse of the 2� 2 matrix times the right hand side of the
Eq. (35) so that the constraints (12) and (13) can also be satisfied.
Thus, theoretically, with a single additional zero-free-length
spring, all three constraints (12)–(14) can be satisfied.

Case 2: Original loads satisfy (14), but violate atleast one of the
constraints (12) and (13). Balancing loads are only zero-free-
length springs.

If we proceed along the same lines as the previous case, then in
Eq. (35), the 2� 2 matrix on the left hand side becomes singular
zero-matrix whereas the right hand side is nonzero by the
description of the case. Thus, in this case, with a single balancing
zero-free-length spring, it is not possible to satisfy the related con-
straint. However, it may be verified that by adding two balancing
springs, all the constraints can be satisfied.

The cases 1 and 2 cover all possible types of constraint viola-
tion. Hence we assert that if the constraints are not satisfied as it
is, then by adding a minimum of one zero-free-length spring in
case (1) (the component related to original loads in constraint (14)
is nonzero) and two zero-free-length spring in case (2) (the com-
ponent related to original loads in constraint (14) is zero), the con-
straints can be satisfied.
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Appendix B.2: Satisfying Constraints (19)–(21) In Appendix
B.1, if the constraints (12)–(14) are respectively substituted by
constraints (19)–(21), there is going to be no change except for
the right hand side of Eq. (34) which takes the form �

Pno

i¼1 vi,
and the right hand side of Eq. (35) which takes the form
�½
Pn

i¼1 qy;iwy;i þ qx;iwx;i

� � Pn
i¼1 qx;iwy;i � qy;iwx;i

� �
�T . There is

no change in the left hand side since here also, the additional loads
are zero-free-length springs. Hence, analogous to the conclusion
of Appendix B.1, we conclude that if the constraints (19)–(21) are
not satisfied as it is, then by addition of a minimum of one zero-
free-length spring in case the constraint (21) is originally violated
and a minimum of two zero-free-length springs in case the con-
straint (21) is not originally violated, the three constraints can be
satisfied.
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