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On an optimal property of compliant topologies

A. Saxena and G.K. Ananthasuresh

Abstract An optimal structural property for compliant
topologies is presented in this paper for general multi-
criteria formulations that comprise the conflicting flexi-
bility and stiffness requirements. The property deduced
from the first-order necessary conditions for optimality
implies that the ratio of the mutual potential energy dens-
ity to the strain energy density is uniform throughout the
continuum, but for portions otherwise bounded by gage
constraints. This property is used to develop an opti-
mality criteria method for synthesizing compliant top-
ologies. It is also noted that the multicriteria formula-
tions considered here are nonconvex and can result in
nonunique solutions. However, by incorporating a one-
variable search along the direction determined by the
above optimal property, it is ensured that the converged
solution is a minimum. Several synthesis examples are in-
cluded with linear frame finite elements which are easy
for implementation and are capable of appropriately ac-
counting for the bending behaviour in the continuum.
Examples with previously reported density based design
parameterization using bilinear plane-stress elements are
also included to illustrate the synthesis procedure.

Nomenclature

E effective Young’s modulus of an element
Eo Young’s modulus of the material
F force vector comprising the actual loads
Fd force vector comprising the unit dummy load
Fin input force
H Convolution operator in the filtering scheme
H Hessian of the objective function
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K stiffness matrix
MPE mutual potential energy
MPEi mutual potential energy of element i
SE strain energy
SEi strain energy of element i
R ratio of MPE and SE
si i-th element of search vector, S
S normalized search direction vector
U displacement vector due to actual loads
V displacement vector due to the unit dummy load
X,Xo vectors containing the design variables
ki stiffness matrix of element i
w weighting factor
xi design variable for element i
x` lower limit on the design variables
xu upper limit on the design variables
∆in deformation at the input port
∆out output deformation
Ω design domain
α scalar parameter for golden section method
εεε strain field due to the actual load
σσσ stress field due to the actual load
σσσd stress field due to the unit dummy load

1
Introduction

A fully compliant mechanism is a flexible continuum
of material which acquires force and motion transmis-
sion capabilities through elastic deformation. Ease of
manufacture, reduced assembly costs, reduced friction,
wear, noise, and the ability to accommodate unconven-
tional actuation schemes are some of the numerous ad-
vantages of compliant mechanisms (Howell and Midha
1995; Ananthasuresh et al. 1994). Two approaches known
in the literature for the systematic synthesis of compli-
ant mechanisms are the kinematics based approach (How-
ell and Midha 1996) and the continuum based approach
(Ananthasuresh et al. 1994; Frecker et al. 1997; Sigmund
1996; Saxena and Ananthasuresh 1998). In the kinemat-
ics based approach, a known compliant topology is rep-
resented and synthesized using a rigid-body linkage with
joint springs and is called the pseudo-rigid-body model.
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The continuum based approach, on the other hand, fo-
cuses on the determination of the topology, shape and size
of the mechanisms.

Although the intended functions of compliant mech-
anisms and stiffest structures are inherently different,
structural optimization algorithms can be adapted for the
synthesis of compliant topologies. A fundamental differ-
ence in the two design problems can be comprehended by
considering the continua shown in Figs. 1a and 1b. Al-
though similar in topology, the design intent for the struc-
ture in Fig. 1a is to support external loads while undergo-
ing minimum deformation, whereas the unitized mechan-
ism in Fig. 1b is designed to flex and deliver the required
output deformation. In compliant mechanisms, therefore,
adequate flexibility is deemed essential for their struc-
tural reconfiguration to afford the required displacement
at the point of interest. Additionally, a compliant mech-
anism also needs to be stiff enough to be able to sustain
external loads. Thus, there are two design objectives to
be met simultaneously when designing a compliant mech-
anism, namely, to seek an optimal continuum (i) flexible
enough to satisfy the kinematic requirements and (ii) stiff
enough to support external loads. These design objectives
are complementary to each other, for a compliant mech-
anism with additional flexibility may not uphold large
external forces and a stiffer continuum may not comply
enough to yield the required deformation. Hence, an op-
timum balance between the two requirements of flexibil-
ity and stiffness is required in the synthesis of compliant
mechanisms.

The deformation at a prescribed output point in
a specified direction can be used as a measure for the
intended flexibility in a compliant mechanism. The unit
dummy load method of computing the required deforma-
tion using the principle of virtual work (Barnett 1961)
can be used to formulate an energy-like functional to
facilitate the use of Euler-Lagrange equations of varia-
tional calculus. Shield and Prager (1970) formalized this
approach by defining the deformation at a point as the
mutual potential energy or MPE. The strain energy, SE,
on the other hand serves as the traditional measure for
the structural stiffness. Based on the notion that a com-
pliant mechanism is required to meet both flexibility and
stiffness requirements, Ananthasuresh et al. (1994) pre-
sented a multicriteria formulation wherein a weighted
linear combination of the two objectives of maximiz-
ing MPE and minimizing SE was used. Frecker et al.
(1997) and Nishiwaki et al. (1998) posed the multicri-
teria objective as maximizing the ratio of MPE and SE
to improve the convergence behaviour in optimization.
Sigmund (1996) proposed to maximize the mechanical
advantage of the mechanism with constraints on vol-
ume and input displacements while Larsen et al. (1996)
presented the synthesis of compliant topologies with mul-
tiple input and output ports. Saxena and Ananthasuresh
(1998) proposed an energy based formulation wherein
the available output energy which is proportional to the
square of the output displacement was used as a measure

for flexibility and was maximized while minimizing the
input energy.

2
Motivation

The basis for the multicriteria formulation of the com-
pliant topology problem is the physical intuition that
a compliant mechanism should meet both the flexibil-
ity and stiffness requirements. Notwithstanding the effi-
ciency, direct implementation of mathematical program-
ming algorithms in solving such multicriteria problems
does not provide further physical insight into the nature
of the optimal solution. The first-order necessary condi-
tions for optimality reveal an interesting structural prop-
erty for compliant topologies which can be generalized
for a variety of multicriteria formulations. The focus in
this paper is to rigorously derive and present the gen-
eralized optimal property for compliant topologies. This
structural property is later employed to develop an effi-
cient algorithm similar to a class of structural optimiza-
tion schemes called the optimality criteria methods which
are known to be very robust in handling large problems
in structural optimization (Venkayya 1989; Haftka and
Gürdal 1989; Rozvany 1989).

3
Problem formulation

Consider an arbitrary design domain with given load-
ing and boundary conditions shown in Fig. 2; P1 is the
point of application of the input force Fin, and∆out is the
expected output deformation at point P2. Some applica-
tions may also require a compliant mechanism to resist an
output force when interacting with its surroundings (e.g.
a workpiece or an electrostatic force in a Micro Electro
Mechanical Systems application), which in general, may
not be known a priori. For such cases, Ananthasuresh et
al. (1994) proposed a spring model to approximate this
force with a spring of spring constant, ks at the output
port.

The output deformation can be expressed as a func-
tional termed as mutual potential energy (MPE) (Bar-
nett 1961; Shield and Prager 1970). A pseudo force of
unit magnitude is applied at point P 2 in the direction of
the desired deformation. For given design specifications,
MPE is calculated as

MPE =

∫
Ω

σσσTd ε dΩ , (1)

where σσσd is the stress field in the continuum when only
the unit dummy load is applied and εεε is the strain field
when only the input load is applied. The strain energy,
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Fig. 1 (a) A structure, (b) symmetric half of the compliant mechanism shown in (c)

Fig. 2 Design domain and problem specifications

SE stored in the continuum can be expressed as

SE =
1

2

∫
Ω

σσσT ε dΩ , (2)

where σσσ is the stress field due to the input load only. To
compute MPE and SE numerically, the continuum can be
approximated using the finite element method. Then for
given boundary conditions, the discretized displacement
field, U due to the input force, Fin can be solved using

KU = F , (3)

where K is a matrix representing the combined stiffness of
the structure and the output spring, ks, and F is the force
vector comprising the input force. With the same bound-
ary conditions, the displacement field, V due to the unit
dummy load can be obtained from

KV = Fd , (4)

where Fd is the force vector comprising the dummy load.
The mutual potential energy or the output displacement,

∆out can then be computed as

MPE =∆out = VTKU , (5)

while the strain energy stored in the continuum can be
written as

SE =
1

2
UTKU , (6)

Ananthasuresh et al. (1994) proposed to simultan-
eously accomplish the two requirements of maximizing
MPE and minimizing SE with the multicriteria objective
defined as their weighted linear combination. That is,

minimize: −wMPE+ (1−w)SE , 0≤ w ≤ 1 . (P1)

where w is a user specified control parameter that assigns
relative weights to the two objectives. Quite often in this
formulation, the orders of magnitudes of the two objec-
tives may not be comparable and one of the objectives
tends to dominate the other. This effect can be compen-
sated by choosing an appropriate weighting factor which
may vary from one problem to another. In general, choos-
ing a value of the normalized weight, w in the global sense
is very difficult. To overcome this limitation, Frecker et al.
(1997) proposed an alternative multicriteria objective of
maximizing the ratio of the output deformation and the
mean compliance. In other words,

minimize: −
MPE

SE
. (P2)

Saxena and Ananthasuresh (1998) proposed an energy
based method to accomplish the three objectives of maxi-
mizing the flexibility, stiffness and the mechanical advan-
tage of the mechanism simultaneously. The underlining
notion here is that a compliant mechanism should de-
liver maximum available energy at the output port while
storing minimum energy within its deformed continuum.
Mathematically, the energy based objective can be posed
as

minimize: − sign(MPE)
1
2ksMPE2

SE
. (P3)
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where 1
2ksMPE2 is the energy stored in the output

spring. The term, sign(MPE) is introduced to restore the
direction of the output deformation which is lost in the
squared term in the numerator of (P3). In a more gen-
eral setup, the flexibility requirement can be defined by
a monotonically increasing function of MPE, i.e. f(MPE),

where ∂f(MPE)
∂MPE > 0. Similarly, an increasing function of

SE, g(SE), where ∂g(SE)
∂SE

> 0 can be used as a measure
for the structural stiffness. The multicriteria formulations
comprising these measures can then be studied under two
groups. The first group involves the linear combination
type formulations wherein the objective is to maximize
the linear combination of the two functions, namely,

minimize:−f(MPE) + g(SE) . (P4)

A special case of this group is the formulation (P1)
where f(MPE) and g(SE) are linear functions of MPE and
SE, respectively. The second group comprises the ratio
type formulations where it is intended to maximize the
ratio of the two measures, i.e.

minimize: −
f(MPE)

g(SE)
. (P5)

Special cases of the ratio type formulations are those
in (P2) and (P3) where f(MPE) is, respectively, linear and
quadratic in MPE and g(SE) is linear in SE. The multi-
criteria formulation (P5) is used in the following section
to derive the optimality property for compliant topologies
which is subsequently generalized. This property is later
employed for the topological synthesis of compliant mech-
anisms. Such a method of synthesis is very similar to
optimality criteria methods which seek an optimal solu-
tion by directly solving the equations resulting from the
optimality conditions.

4
Optimality property for compliant topologies

From the stationarity conditions, the function gradients
must vanish at an optimum. Differentiating the objective
in (P5) with respect to the design variable, xi and equat-
ing it to zero yields,

∂(MPE)/∂xi
∂(SE)/∂xi

=
f(MPE)

g(SE)

g
′
(SE)

f
′(MPE)

, (7)

where f
′
(MPE) represents ∂f(MPE)

∂MPE and g
′
(SE) is

∂g(SE)
∂SE

. Using (5), ∂(MPE)/∂xi can be expressed as

∂(MPE)

∂xi
=
∂VT

∂xi
KU+VT ∂KU

∂xi
. (8)

Since, F which is also equal to KU in (3), is independent
of the design variables, (8) can be simplified as

∂(MPE)

∂xi
=
∂VT

∂xi
KU . (9)

Further, since Fd in (4) is independent of the design vari-
ables, differentiation of (4) with respect to xi yields

∂VT

∂xi
K =−VT ∂K

∂xi
. (10)

On combining (9) and (10), we obtain

∂(MPE)

∂xi
=−VT ∂K

∂xi
U . (11)

Computation of ∂K/∂xi can be simplified by choosing
the design variables, xi in a manner that the stiffness mat-
rix, K is linear in xi. Since the i-th design variable occurs
only in its corresponding element stiffness matrix, ki, this
helps in simplifying the right-hand side of (11) to

∂(MPE)

∂xi
=−vTi

∂ki
∂xi

ui , (12)

where ui and vi are the displacement vectors for the i-th
element due to the load vectors, F and Fd, respectively,
and ki is the stiffness matrix of that element. As ki is lin-
ear in xi, (12) can be rewritten as

∂(MPE)

∂xi
=−vTi

ki
xi

ui . (13)

Following similar steps to compute ∂(SE)/∂(xi), we ob-
tain

∂(SE)

∂xi
=−

1

2
uTi

ki
xi

ui . (14)

Equations (7), (13) and (14) can finally be combined to
obtain

vTi kiui
1
2uTi kiui

=
f(MPE)

g(SE)

g
′
(SE)

f
′(MPE)

. (15)

Here, vTi kiui represents the contribution of the i-th elem-
ent to the desired output deformation, MPE. This can be
termed as the element mutual potential energy,MPEi of
the i-th element. Similarly, 1

2uTi kiui is the contribution
of the i-th element to the strain energy, SE of the con-
tinuum. This can be termed as the element strain energy,
SEi of that element. Equation (15) thus becomes

MPEi

SEi
=
f(MPE)

g(SE)

g
′
(SE)

f
′(MPE)

=R , (16)

whereR is a global constant. Following identical steps for
the linear combination type formulations in (P4), the sta-
tionarity criteria yield a similar result where R is equal

to g
′
(SE)

f
′
(MPE)

. On dividing both the numerator and denom-

inator of (15) by the element volume, vi and taking the
limit as vi tends to zero, the ratio, MPEi/SEi can be in-
terpreted as the ratio of mutual potential energy density
to the strain energy density at a point in the continuum.
Equation (16) therefore reveals an interesting structural
property for compliant topologies which can be stated as
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Property: 1
For an optimal compliant topology that satisfies
both flexibility and stiffness requirements, the ratio
of the mutual potential energy density and the
strain energy density is uniform throughout the
continuum provided the continuum stiffness is lin-
ear in design variables.

The optimality property holds true for arbitrary in-
creasing functions, f(MPE) and g(SE) chosen as respec-
tive measures of flexibility and stiffness. Noting that the
formulations in (P4) and (P5) are general, the property is
independent of the multicriteria formulations and there-
fore is truly a structural attribute of optimal compliant
topologies. The structural property is also independent
of the finite element type used in continuum discretiza-
tion as long as the structural stiffness matrix, K is lin-
ear in the design variables. It should be noted, however,
that some design variables may assume values (negative
values for instance) that are not meaningful to satisfy
the optimality property as they represent the physical at-
tributes of the elements such as the cross-sectional areas
of truss elements or widths of frame elements. Suitable
lower and upper bounds on the variables are therefore
essential to realize a practical solution. Such constraints
are called gage constraints. The lower bound on the vari-
ables is typically a very small positive number to avoid
singularity problems in the structural stiffness matrix. An
upper bound can result due to limited availability of the
material for topology synthesis. This requirement is dif-
ferent from the resource (weight/volume) constraint and
merely implies the nonavailability of an infinite amount
of material. Thus, a minimum solution is guaranteed in
the multicriteria formulations and satisfies the following
property.

Property: 2
For realistic optimal compliant topologies with lin-
early varying continuum stiffness, the ratio of the
mutual potential energy density to the strain energy
density is uniform throughout the continuum, but
for portions otherwise bounded by gage constraints.

4.1
Numerical verification

Synthesis examples solved using a mathematical pro-
gramming scheme are presented to verify the stationarity
criterion in (16). The input-output specifications for an
inverter mechanism, an example used by Sigmund (1996),
are indicated in Fig. 3a. Linear frame elements are used
to model the domain. Choosing the out-of-plane widths
of the elements as design variables renders the stiffness
matrix, K linear in design variables. The discretized do-
main is shown in Fig. 3b with element numbers. Respec-
tive widths are initialized to 0.25 cm for which the lower

and upper limits are 10−4 cm and 0.5 cm, respectively.
Young’s modulus, E is taken as 2×106 N/cm2 and the
thickness is 0.1 cm. An input force, Fin of 10 N is used for
mechanism actuation.

Three cases of the multicriteria formulation, (P5) are
chosen to illustrate that the structural property is indeed
satisfied by optimal compliant topologies. First −MPE

SE ,
a special case of (P5), is minimized using the Sequential
Quadratic Programming (SQP) method (Matlab 1997).
Figures 3c and 3d show the resultant topology and the de-
formed profile of an optimal structure. It can be observed
by inspection that the primary deformation at the output
port is along the direction specified. Table 1 compares the
energy ratios of the individual elements with that of the
continuum. It is observed that not all design variables sat-
isfy the stationarity criteria but only those which remain
within the specified bounds. This is an expected result
from Property (2). Both the gage constraints for such
variables are inactive and the corresponding Lagrange
multipliers are zero. For the design variables reaching
their upper or lower bounds, the energy ratio criterion
is not satisfied since the corresponding gage constraints
are active for which the Lagrange multipliers are posi-
tive as expected from the first-order necessary conditions.
The structural property is also verified for the second and

third functions −sign(MPE)MPE2

SE
and −MPE

eSE
as spe-

cial cases of (P5) for which similar trends are observed.
Figures 3e and 3f show the optimal topologies and the
deformed profiles for the second multicriteria function
while Figs. 3g and 3h show the same for the third case.
Tables 2 and 3 exhibit the energy ratios for the elem-

ents for the functions −sign(MPE)MPE2

SE
and −MPE

eSE
,

respectively.

Table 1 The energy ratios of the elements satisfying the op-
timality property for −MPE

SE (Fig. 3c)

Element number xi
MPEi
SEi

R = MPE
SE

1 0.01441 0.5842 0.5842
4 0.01981 0.5842 0.5842

24 0.16329 0.5842 0.5842
26 0.40026 0.5842 0.5842

5
Optimality criteria approach

Optimality criteria methods find the optimal solution by
directly solving the equations resulting from the optimal
conditions. These conditions can be intuitive stipulations;
for instance the Fully Stressed Design technique in tra-
ditional structural optimization wherein it is intended to
remove the material from the members which are not
fully stressed unless prevented by the minimum size con-
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Fig. 3 A synthesis example of the displacement inverter using sequential quadratic programming. (a) Design domain for compli-
ant inverter, (b) a frame elements mesh, (c)–(d) optimal topology of displacement inverter for −MPE

SE and the deformed profile,

(e)–(f) optimal topology and deformed profile for −sign(MPE)MPE2

SE , (g)–(h) optimal topology and deformed configuration for

−MPE
eSE

Table 2 The energy ratios of the elements satisfying the

structural property for −sign(MPE)MPE2

SE (Fig. 3e)

Element number xi
MPEi
SEi

R = MPE
2SE

9 0.00080 0.08896 0.08896
16 0.01299 0.08896 0.08896
17 0.1285 0.08896 0.08896
18 0.00763 0.08896 0.08896
24 0.00081 0.08896 0.08896
27 0.00903 0.08896 0.08896
28 0.02052 0.08896 0.08896

Table 3 The energy ratios of the elements satisfying the op-
timality criteria for −MPE

eSE
(Fig. 3g)

Element number xi
MPEi
SEi

R =MPE

1 0.03645 0.16786 0.16785
6 0.03109 0.16786 0.16785

10 0.00644 0.16785 0.16785
11 0.01033 0.16785 0.16785
12 0.00057 0.16786 0.16785
17 0.03099 0.16785 0.16785
22 0.03645 0.16786 0.16785
24 0.00057 0.16785 0.16785
25 0.01033 0.16785 0.16785
26 0.00644 0.16785 0.16785

straint. Optimality conditions can also be derived using
the stationarity conditions. An example is that of ob-
taining a stiff structure with minimum weight using the
criteria that the strain energy density is uniform through-
out the structure. This condition can be derived for an
objective of minimizing the strain energy with the volume
constraint.

Since their inception (Prager and Taylor 1968; Ven-
kayya et al. 1968), optimality criteria methods have been
well-developed in literature and found to be very success-
ful in optimizing structures for minimum weight and/or
mean compliance. A critical gap, however, has been the
absence of appropriate existence and convergence theo-
rems for the solution sought in discrete systems. This is
because both convexity of the design space and unique-
ness issues are difficult to address analytically for the cor-
responding continuum models (Strang and Kohn 1982).
For the multicriteria formulations, the design space is not
always convex, i.e. there may exist more than one sta-
tionary points, and the objective can yield more than one
minima for the same design specifications if searched from
different initial guesses. In other words, the optimal so-
lution may not be necessarily unique. Two examples are
presented below to illustrate these issues related to the
multicriteria formulations.

Consider a two-variable numerical example with beam
elements shown in Fig. 4a. A downward vertical force, F
of 1N is applied at node 3 and it is desired to maximize



42

the deflection at node 2 along the downward vertical di-
rection. The design variables, x1 and x2 are the respective
widths of the elements for which the stiffness matrix, K is
linear in design variables. The thickness and lengths of
the elements are 0.1 cm and 1 cm, respectively, and the
Young’s modulus is 2×106 N/cm2. Using (5) and (6), an-
alytical expressions for the displacement at node 2 and
the strain energy can be computed as

MPE = 0.001
9x1 + 2x2

x1x2
,

SE = 0.001
7x1 +x2

x1x2
. (17)

The lower and upper bounds of 10−4 cm and 0.1 cm
are imposed on the design variables. The problem of max-
imizing the displacement at a desired point and minimiz-
ing the strain energy can be considered as equivalent to
minimizing the mean compliance in the presence of a dis-
placement constraint. The displacement constraint in this
example is the equality constraint with a value of 0.5.
The contours of the strain energy are shown with dotted
curves in Fig. 4b and the displacement constraint (MPE
= 0.5) is shown with the solid curve. It is evident from
the figure that there is no unconstrained extremum for
the objective stated above. Further, using the first-order
necessary conditions, it can be shown that there exist
two stationary points, A and B. At A, the strain energy
is maximized to a value of 0.388 for x1 as 0.100 and x2

as 0.018, while at B, the strain energy is minimized to
a value of 0.275 for values of x1 and x2 as 0.005 and 0.100,
respectively.

The example for the displacement inverter solved be-
fore to verify the structural property is used here to
demonstrate nonuniqueness in optimal solutions. Using
the formulation in (P2), a special case of (P5), for the
same design specifications in Figs. 3a, Fig. 5a shows one
of the resultant optimal topologies for which the output
displacement at optimum is 0.09 cm and the strain energy
is 0.046 N-cm. The objective function is minimized to
a value of −1.95. With the same initial specifications and
a different initial guess for the design variables (this guess
is generated using random numbers in the range of 10−4

and 0.5), a second optimal solution is obtained shown in
Fig. 5c. For this case, at optimum, the output displace-
ment is 0.05 cm and the strain energy is 0.009 N-cm. The
value of the objective for this topology is −5.37. Both the
deformed configurations (dashed lines) in Figs. 5b and
d of the two topologies, respectively, satisfy the force-
deflection specifications in Fig. 3a.

5.1
Resizing algorithm

The resizing approach in the optimality criteria methods
differ from those in the mathematical programming
schemes; the former uses sweeping techniques while the

latter uses point to point search in the design space
(Venkayya 1989). Based on the optimality criterion in
(16), a resizing scheme can be developed for the synthesis
of compliant mechanisms. Multiplying both sides of this
equation by xi, the resulting expression can be written in
an iterative form as

xk+1
i =

1

R

MPEi

SEi
xki , (18)

where xki represents the k-th iteration value of the i-th
design variable and xk+1

i is the updated (k+1)-th iter-
ation value for the same. Due to the nonconvexity and
nonuniqueness behaviour of the multicriteria formulation
seen in previous examples, using this updating scheme
alone may not necessarily lead the design variables to-
wards a minimum. To guarantee convergence, a tradeoff
can be made by combining the efficiency of optimality
criteria methods and reliability of mathematical program-
ming schemes. This can be accomplished in two steps.
The first step is to formulate a search vector as the dif-
ference between the updated and the old design variables
and subsequently normalizing it. The second step is then
to perform a robust one dimensional search along the nor-
malized search vector. An efficient line-search is needed to
minimize the number of function evaluations since each
evaluation requires a finite element analysis. For a nor-
malized search vector, S and the initial set of design vari-
ables, Xo, any other set, X can be written as

X = Xo+αS , (19)

where

si =

(
xk+1
i −xki

)
max

(
xk+1
i −xki

) ,
and α is a scalar variable to be determined. Equation
(19) allows the design variables and thus the objective
function to be expressed in terms of a single variable,
α. Minimization of the function then requires determin-
ing an appropriate value of α, i.e. α∗ within a specified
interval.

Among the many one-variable optimization methods
available, Brent’s algorithm (Press et al. 1991) is cho-
sen here for its robustness in implementation and the
elimination of the need for derivative calculations. The
algorithm performs combined parabolic and Golden Sec-
tion search (Rao 1984) to determine a minimum within
a prespecified interval. When implementing this search
with the resizing scheme in (18), the design variables
are ensured to remain within their specified bounds in
each step. An issue of concern here is that the size of
the interval in the scalar variable, α is not known a pri-
ori. Selecting a large interval size at the outset is not
appropriate as the function may not be unimodal, i.e.
it may have more than one minima in the interval. Al-
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Fig. 4 (a) The beam example, (b) design space for the beam example

ternatively, selective line searches are employed with
checks on the monotonicity of the function. That is,
a line search is initially commenced by choosing a small
interval size. If the function is monotonic, α∗ assumes
a value of either the lower or upper limit of the in-
terval. In such a case, the subsequent interval is ex-
panded and minimization is continued. Otherwise, the
line search is stopped. Variables obtained after the search
are updated again using (18) and the process is iter-
ated until convergence is achieved. A detailed schematic
of the algorithm is provided in Fig. 6. The proposed
method combines both the efficiency of the optimality
criteria method and reliability of mathematical search
schemes which requires only the function evaluations.
Using a robust line search algorithm with selective in-
terval search further enhances the performance of the
method resulting in the reduction of the number of func-
tion evaluations.

5.2
Global control on structural compliance and stiffness

The multicriteria formulations previously mentioned al-
low only an indirect control over the structural flexibility
and stiffness which is accomplished when specifying the
increasing functions f(MPE) and g(SE) as measures of
flexibility and stiffness, respectively. Direct control on the
flexibility (and stiffness) of the extracted optimal top-
ology is still possible by varying the design variables on
a global scale. Since the structural stiffness matrix, K is
linear in design variables, increasing the latter by a fac-
tor, γ (γ > 1) increases the stiffness to γ K. From (3)–(6),
the altered values of mutual potential and strain energies
(MPEn and SEn, respectively) can be computed as

MPEn =
1

γ
MPEo , SEn =

1

γ
SEo , (20)

where MPEo and SEo are the (old) optimal values.
Values of factor, γ smaller than unity results in an in-
crease in flexibility and decrease in stiffness. Likewise, the
optimal topology can be made stiffer (and less compli-
ant) for γ greater than one. The parameter γ may or may
not alter the resulting values of the multicriteria objec-
tives. Depending on whether the value of the objective
for (P1) at optimum is positive or negative, decreasing
γ will be respectively detrimental or favourable. How-
ever, a decrease in γ does not alter the optimum objective
value in (P2) while the latter in (P3) is further mini-
mized. Hence, the increasing functions corresponding to
the measures of flexibility and stiffness, and the multi-
criteria formulation should be chosen appropriately to
account for this behaviour. Furthermore, γ can be weakly
associated with the stress levels in the continuum. For in-
stance, if more compliance is desired, γ can be decreased
to a value for which a region of the extracted optimal top-
ology is stressed to the maximum permissible limit.

6
Design parameterization and implementation

The optimality criteria approach is implemented using
two-dimensional linear frame elements and four noded
bilinear plane stress elements for domain discretization.
In both cases, linear finite element analysis is employed
for function evaluation. This section describes the de-
sign parameterization using the two element types. Some
numerical difficulties in the finite element discretization,
namely checkerboard patterns and mesh dependencies
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Fig. 5 A synthesis example of a displacement inverter using sequential quadratic programming. (a) Optimal topology I of dis-
placement inverter, (b) deformed profile, (c) optimal topology II of displacement inverter obtained using asymmetric initial guess,
(d) deformed profile

Fig. 6 Schematic of the optimality criteria approach

are also addressed in the context of continuum modeling
with four noded bilinear plane stress elements.

6.1
Frame elements

Frame elements have the capability to deform both in the
longitudinal and transverse directions and therefore can
incorporate bending modes. Since it is required that the
element stiffness should be linear in the corresponding de-
sign variable, the respective widths of the elements are
chosen as the design variables. A full ground structure
is recommended for the topology synthesis using truss,
beam or frame elements. A ground structure is a set of
elements in a grid of points where each point is connected
to every other point. A full frame ground structure is im-
practical to use as it involves very long and overlapping
elements in the continuum. Instead, the ground structure
shown in Fig. 7a is used.

6.2
Bilinear quadrilateral plane stress elements

Following the idea of the standard topology optimization
procedures, the material density, xi in each element is
considered to be the design variable (Bendsøe 1995). This
conforms with the requirement of the domain stiffness to
be modelled as a linear function of the design variables.
The material densities are allowed to acquire any value
between x` and 1 where x` is a small positive quantity;
x` is not allowed to be zero due to the numerical prob-
lems associated with the finite element stiffness matrix.
The element for which the density value, xi reaches a min-
imum is regarded as absent from the topology. Similarly,
a value of 1 for xi represents a solid element. Material
properties of the continuum can be modelled by relating
the Young’s modulus, E of the element with its density in
the following manner:

E = xi E
o , (21)

where Eo is the Young’s modulus of the solid mate-
rial. Some of the most frequently encountered difficulties
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in topology optimization with four noded bilinear finite
elements are the checkerboard patterns and the mesh de-
pendency problems. A checkerboard patch is typically
a pattern of alternating solid and void elements in an opti-
mal topology which corresponds to a region of artificially
high (numerical) stiffness (Jog and Haber 1996; D́ıaz and
Sigmund 1995). The appearance of such patterns is com-
mon in topology optimization and can be attributed to
poor numerical modelling and the use of lower order finite
elements.

Another difficulty is the problem of mesh dependency
or the nonexistence of solutions wherein the optimal so-
lutions do not converge with mesh refinement. Mesh re-
finement should ideally yield the same topology as for
a coarse mesh but with better boundary definitions. This
problem can be circumvented using a computationally ef-
ficient, yet simple, method proposed by Sigmund (1996).
Implementation of the heuristic approach called the filter-
ing scheme does not allow rapid variation of the density
gradients in the design space.

Such a filtering scheme is used to prevent rapid vari-
ation in the mutual potential energies, MPEi and strain
energies, SEi of the elements in the domain. For an elem-
ent, i, neighboring elements are first identified within
a circular region of radius, rmin about the considered
element. The convolution operator is then written as (Sig-
mund 1996)

Hj = rmin−dist(i, j) , {i ε N | dist(i, j)≤ rmin} ,

i= 1, . . . , N , (22)

where dist(i, j) is defined as the distance between the
center of the neighbouring element, j and the considered
element, i. The filter factor, Hj for the element, j de-
cays linearly with its distance from the element, i. The
smoothened value of MPEi is obtained as

MPEfi =
1

xi
∑N
k=1 (Hj)

N∑
k=1

HjMPEj (xj) , (23)

where MPEfi are the filtered values of the mutual poten-
tial energies of the elements andMPEj , j = 1, . . . , N are
the true values. Filtered values of strain energies, SEfi are
computed in a similar manner.

7
Synthesis examples

Numerous synthesis examples using the multicriteria for-
mulations previously mentioned are presented both for
macro and micro scale applications using the proposed
resizing scheme. The first example is of a pliers mechan-
ism the design specifications of which are given in Fig. 7a.
Figure 7b shows the optimal topology of the mechanism
synthesized using the formulation in (P2). The variation

in the element sizes shown in the figure actually repre-
sents their relative out-of-plane widths. The convergence
history is shown in Fig. 7c wherein it can be noticed that
the output displacement is not maximized individually.
After reaching a maximum, there is a drop in MPE ac-
companied by a steep fall in the value of the strain energy.
At convergence, the output deformation is 0.016 cm and
the strain energy stored is 0.0053 N-cm for which the ob-
jective function has an optimal value of −3. Even though
the objective function is minimized, the stiffness require-
ment in this example dominates over the flexibility re-
quirement and as a result, the mechanism is relatively
stiff. However, the output port does move along the de-
sired direction, thus fulfilling the functional requirement.
The deformed configuration of the mechanism shown in
Fig. 7d is obtained using plane stress finite element analy-
sis in ABAQUS (Hibbit, Karlsson & Sorensen Inc. 1986)
for an input force of 10 N. For manufacturing reasons, the
minimum width of the elements significant to the top-
ology is chosen as 0.2 cm. The output deformation along
the prescribed direction is 0.08 cm while that along the di-
rection perpendicular to it is 0.02 cm which suggests that
the output port moves primarily along the direction spec-
ified. The final fabricated model of the pliers mechanism
is shown in Fig. 7e.

The example of compliant pliers is also solved using
the energy based approach in formulation (P3). Fig-
ure 8a shows the optimal topology of the mechanism and
the convergence history is shown in Fig. 8b. The values
of MPE and SE at convergence are 0.0393 N-cm and
0.014 N-cm, respectively, for which the function attains
a minimum of −0.11. Comparison of the values of MPE
and SE with those in the previous example from the frame
finite element model and the fact that the output defor-
mation reaches a maximum in this case, both suggest that
the structure in Fig. 8a is more flexible than the one in
Fig. 7b. This is because the flexibility requirement has
more weightage than the stiffness requirement in the en-
ergy based multicriteria objective. Deformation results
of the finite element analysis of the structure with plane
stress elements shown in Fig. 8c conform with the design
specifications.

The second example is the synthesis of a compliant
gripper using four noded bilinear plane stress elements.
The symmetric half of the design domain is shown in
Fig. 9a. The input and output specifications along with
boundary conditions are shown in the figure with the in-
put force, Fin of 10 N. A finite element mesh of 35×35 is
used in this example. Mesh densities of the elements are
considered as the design variables. Optimal topology of
the half section of the gripper mechanism obtained using
formulation (P2) is shown in Fig. 9b and the mechan-
ism is shown in Fig. 9c. At convergence, an output de-
formation of 1.55 cm is obtained while the strain energy
stored is 66.35 N-cm. The multicriteria function is min-
imized to −0.0235. The grippers example is also solved
using the energy based formulation (P3) for which the full
section topology is shown in Fig. 9d. Convergence in this
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Fig. 7 Synthesis example of a compliant pliers using formulation (P2). (a) Problem specification on the ground structure, (b) op-
timal topology, (c) convergence history, (d) finite element analysis with plane stress elements, (e) realized modified mechanism
manufactured using ABS plastic

Fig. 8 Synthesis of a compliant pliers using the energy based objective. (a) Optimal topology, (b) convergence history, (c) finite
element analysis with plane stress elements

case is obtained with optimal values of MPE and SE as
2 N-cm and 115.27 N-cm, respectively. The optimal value
of the energy based multicriteria objective is obtained as
−0.034.

As an application in the micro-scale for Micro Elec-
tro Mechanical Systems (MEMS), the synthesis ex-
ample of a micro-compliant amplifier is presented next.
A micro-compliant amplifier finds an application in
micro-accelerometers. The intent here is to enhance the
sensitivity of the device by amplifying the capacitively
measured output displacement. This requires the mech-
anism to possess a large geometric advantage in addition
to being compliant. The rectangular design domain of di-
mensions 200×100µm2 with the required specifications

is shown in Fig. 10a. The domain is discretized into lin-
ear frame elements with the input force and the direction
of the intended deformation as specified. The input force
of 500 µN is applied to simulate the acceleration to be
sensed by the device.

The proposed resizing algorithm with formulation
(P2) yields an optimal topology shown in Fig. 10b wherein
the in-plane thicknesses represent the relative out-of-
plane widths of the elements. The convergence history is
shown in Fig. 10c. At optimum, the output displacement
is 0.29 µm and the strain energy is 0.1 N-µm. The multi-
criteria objective in (P2) is minimized to −2.79 requiring
about 900 function evaluations. The geometric advan-
tage of the resulting mechanism is about 7. A macro-
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Fig. 9 Synthesis of compliant grippers using bilinear plane stress elements. (a) Design domain for the symmetric half, (b) opti-
mal topology for the symmetric half of compliant grippers using formulation (P2), (c) optimal topology for compliant grippers,
(d) optimal topology for grippers using the energy based approach of formulation (P3)

Fig. 10 Synthesis example of micro compliant amplifier. (a) Problem specification on the ground structure, (b) optimal topology
(obtained using asymmetric initial guess), (c) convergence history, (d) realized design with ABS plastic, (e) finite element analysis
with plane stress elements

prototype for the displacement amplifier of length 12 cm
and width 6 cm is manufactured using the ABS plastic
(Young’s modulus = 2.1 GPa) which is shown in Fig. 10d.
For manufacturing reasons, the out-of-plane widths of
the significant elements are scaled between 0.2 cm and
0.5 cm, respectively. Linear plane stress finite element
analysis is performed using ABAQUS (Hibbit, Karls-
son & Sorensen Inc. 1986) for the input force of 2 N
(Fig. 10e). The output displacement along the specified
direction is 1.15 cm while that along the transverse di-
rection is 0.04 cm demonstrating that the output port
moves primarily along the direction specified. The input
displacement is 0.1 cm and thus the geometric advantage
obtained for the continuum model is about 10. It should

be noted that the inherent compliant behaviour of the
mechanism is valid for macro and micro scales.

Another example in microscale application is that of
a noncontact micro compliant AND logic gate. The de-
sign specifications require two forces, F1 and F2 shown
in Fig. 11a together to produce the intended output de-
formation. Here, mechanical forces are used as signals to
operate the AND gate. A structure such as this one can
be micro-fabricated in silicon. The energy based formu-
lation (P3) is employed for the synthesis. The resultant
topology for the AND logic gate is shown in Fig. 11b
and the deformed configurations of the continuum model
are shown in Figs. 11c and d, which explain the work-
ing principle of the mechanism. With no actuation, no
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Fig. 11 Synthesis example of a micro AND logic gate. (a) Design specifications, (b) optimal topology of the AND gate, (c) de-
formed configuration with a single load, (d) deformed configuration with both loads, (e) prototype of the AND gate fabricated
with the ABS plastic

displacement is registered at the output port. This can
be treated as the 0+0 = 0 case in the gate. When only
one of the forces, F1 or F2 is used for actuation (Fig. 11c
represents both cases since the design is symmetric), the
deformation at the output port is not significant in the
vertical upward direction. This can be considered as the
1+0 = 0 case. It is only when both forces are acting on
the continuum (Fig. 11d) that the change in the output
capacitance is positive and detectable (1+1 = 1 case).

8
Conclusions

The multicriteria formulations for the topology synthe-
sis of compliant mechanisms are based on the intuitive
notion that these mechanisms should simultaneously sat-
isfy flexibility and stiffness requirements. However, no
further physical insight is made available when imple-
menting a mathematical programming search technique
in seeking an optimal compliant topology. In this paper,
previously reported multicriteria formulations are broad-
ened, unified and categorized into two groups. A physi-
cally insightful property for optimal compliant topologies
is rigorously derived for these formulations using the first-

order necessary condition. It is later shown using numeri-
cal examples that the multicriteria formulations are non-
convex and can yield multiple optimal solutions for the
desired objective. Based on this observation, an efficient
and reliable synthesis algorithm is developed for compli-
ant mechanisms which iteratively employs the optimality
property in conjunction with a robust one-variable search
technique. The synthesis algorithm is implemented in nu-
merous examples with the frame finite element ground
structure that appropriately accounts for the bending be-
haviour in the continuum. This, and the variable dens-
ity plane stress bilinear elements are employed to solve
many examples to illustrate the efficacy of the synthesis
method.
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