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Application of Rigid-Body-
Linkage Static Balancing
Techniques to Reduce Actuation
Effort in Compliant Mechanisms
There are analytical methods in the literature where a zero-free-length spring-loaded
linkage is perfectly statically balanced by addition of more zero-free-length springs. This
paper provides a general framework to extend these methods to flexure-based compliant
mechanisms through (i) the well know small-length flexure model and (ii) approximation
between torsional springs and zero-free-length springs. We use first-order truncated
Taylor’s series for the approximation between the torsional springs and zero-free-length
springs so that the entire framework remains analytical, albeit approximate. Three
examples are presented and the effectiveness of the framework is studied by means of
finite-element analysis and a prototype. As much as 70% reduction in actuation effort is
demonstrated. We also present another application of static balancing of a rigid-body
linkage by treating a compliant mechanism as the spring load to a rigid-body linkage.
[DOI: 10.1115/1.4031192]

1 Introduction

Compliant mechanisms [1] are single monolithic elastic bodies
that transform and/or transmit motion and forces. Unlike rigid-
body linkages, where the deformation is due to joints, compliant
mechanisms rely upon elastic deformation. Because of the elastic
deformation, effort is required to actuate compliant mechanisms
even when they are not acting on any workpiece or against any
load. Reduction or elimination of the actuation effort saves actua-
tion energy and also improves force feedback characteristics of
compliant graspers [2]. Since elimination of the effort over a
range of configurations is equivalent to having static equilibrium
over that range, these phenomena are referred to as static
balance [2].

Various strategies have been investigated for the design of stati-
cally balanced compliant mechanisms. While some of them are
specifically directed toward designing laparoscopic graspers
[2–5], many address the static balancing strategies for general
compliant mechanisms [6–12]. An overview of different criteria
that could be used to design a statically balanced compliant mech-
anism is described in Ref. [9].

In Refs. [4,7,10,12], static balancing relies on the design of a
distinct negative stiffness balancer. We know that negative stiff-
ness is associated with unstable equilibrium. While the authors of
Ref. [12] used their previous work on multistable compliant
mechanisms, prestressed slider crank linkage and a column under
compression formed the basis for obtaining unstable equilibrium
in Refs. [4,7,10]. Optimization, including topology optimization
[4], was used to increase the accuracy of static balancing.

Herder [13,14] introduced a new class of problems wherein a
rigid-body linkage under a spring load is to be statically balanced
by adding one or more balancing springs. References [13] and
[15] dealt with perfect static balancing of a four-bar linkage where
both original and balancing springs are of zero-free-length. When
both original and balancing springs are of zero-free-length, it was
shown in Refs. [16,17] that any revolute-jointed rigid-body

linkage can be perfectly balanced. Furthermore, it was suggested
in Ref. [15] that since flexure-based compliant mechanisms can be
approximated as torsional-spring-loaded rigid-body linkages,
study of static balancing of spring-loaded rigid-body linkages
holds relevance for compliant mechanisms as well.

With an intent to apply on compliant mechanisms through
small-length flexure model, Radaelli et al. [18] focused on devel-
oping approximate static balancing strategies for rigid-body link-
ages where both original and balancing springs are of torsional
type. While authors of Refs. [13–15,17] gave perfect static balanc-
ing methods based on simple analytical equations, Radaelli et al.
[18] relied on genetic algorithm-based numerical optimization and
visual judgment of three-dimensional graphs. The work of
Radaelli et al. [18] was followed up by its application on static
balancing of a two degree-of-freedom compliant mechanism,
which has a self-guided straight line motion [6].

In order to conceptualize an approximately statically balanced
compliant mechanism without resorting to numerical procedures,
we link the methods in Refs. [13–17] to small-length flexure-
based compliant mechanisms by an intermediate step. The inter-
mediate step is the approximation of torsional springs, which
models small-length flexures, by zero-free-length springs. The
approximation is based on matching terms up to first-order terms
in the Taylor’s series expansion of actuator force or torque. This
idea is formalized as a framework in Sec. 2.

There are parallel works on relating the insights gained from
Ref. [14] to pseudo-rigid-body models of compliant mechanisms.
Based on an example given in Ref. [14], a generic zero-stiffness
spring was designed in Ref. [8]. The intent was to use such springs
as building blocks for designing statically balanced compliant
mechanisms. In the work, cross-axis flexural pivot was used as the
compliant revolute joint, and cantilever type beam was used to
emulate zero-free-length springs. The idea of generic zero-
stiffness compliant joint was taken forward in Ref. [19], where a
simple easy-to-use nondimensional equation was obtained for the
design of zero-stiffness cross-axis flexural pivot. Compliant joints
in a statically balanced system are usually subjected to very high
compressive loads. Through the example of cross-axis flexural
pivot, it was brought to the fore in Ref. [19] that the stiffness of
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the compliant joint changes due to high compressive loads. To
account for the change, corrections have to be applied to the bal-
ancing spring parameters.

Apart from presenting the analytical framework in Sec. 2, we
also demonstrate an example in Sec. 3, where a reduction in actua-
tion effort is accomplished by adding a spring-loaded rigid-body
linkage rather than just springs. Since the analytical spring-load
balancing techniques for rigid-body linkages and the torsional-
spring-loaded rigid-body linkage approximations of compliant
mechanisms are crucial to our approach, we briefly describe them
next.

1.1 Exact Static Balancing for Spring-Loaded Rigid-Body
Linkages. A method to statically balance any pin-jointed linkage
loaded by zero-free-length springs is given in Ref. [17]. Ideally, in
a zero-free-length spring, the two anchor points are coincident
when the force on the spring is zero. A plot of the force on the
spring (f) versus the distance between the anchor points (l) would
be as shown in Fig. 1(a), where the plot is collinear with the ori-
gin. In reality, in a helical spring, the two anchor points can never
be coincident because of the finite volume of the spring. In the ab-
sence of force on the spring, the distance between the anchor
points, i.e., free-length, is finite. The effect of the free-length is to
shift f versus l plot along the l-axis, as shown in Fig. 1(b). There is
another factor that affects the plot—prestress, which can be intro-
duced by cold working. Prestress shifts the plot along the f-axis,
as shown in Fig. 1(c). By introducing appropriate prestress, the f
versus l plot can be made collinear with the origin and in the
working range, i.e., l greater than free-length, the plot is the same
as that in Fig. 1(a).

In this paper, we apply the method of Deepak and Ananthasur-
esh [17] to a pin-jointed lever and a double pin-jointed linkage.
Hence, it is apt to summarize the result of the paper [17] as
applied to these two linkages.

1.1.1 Double Pin-Jointed Linkages. In the double pin-jointed
linkage shown in Fig. 2, there are two bodies labeled as 1 and 2 in
addition to the ground that is labeled as 0. Attached to bodies 1
and 2 are zero-free-length springs anchored from the ground.
There are local coordinate frames associated with bodies 1 and 2,

as shown in Fig. 2. Let Z½j�i represent the ith spring attached to the

Fig. 1 Practically realizing a zero-free-length spring by giving appropriate pretension: (a) zero
free length, (b) shifting of the plot along l-axis by l0, and (c) shifting of the plot along f-axis due
to prestressing fp

Fig. 2 A double pin-jointed linkage under the zero-free-length
spring loads
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jth body. Associated with each spring Z½j�i are the parameters

a
½j�
i ; b

½j�
i , and k

½j�
i , which represent the local coordinates of the

attachment point on body j, global coordinates (with respect to the
ground frame) of the anchor point on the ground (labeled as 0th
body), and the spring constant. We represent the coordinates as 2� 1
column matrix. Further, let nj represent the total number of springs
attached to body j. As per the results of Deepak and Ananthasuresh
[17], obtained by setting the coefficients of the configuration-
dependent functions in the expression for the potential energy to
zero, the double pin-jointed linkage under the action of zero-free-

length spring, Z½2�i ; i ¼ 1 � � � n2, and Z½1�i ; i ¼ 1 � � � n1 will be in per-
fect static balance over all the configurations of the linkage if

Xn2
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i b
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i

1 0

0 1

" #
a
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i ¼ 0 (1)
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i ¼ 0 (2)
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i ¼ 0 (3)
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i b
½1�T
i

1 0
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" #
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T 1 0
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" #
s ¼ 0 (4)

Xn1

i¼1

k
½1�
i b
½1�T
i

0 �1

1 0

� �
a
½1�
i þ ~b

T 0 �1

1 0

� �
s ¼ 0 (5)

where s represents the local coordinates (with respect to coordi-
nate frame of body 1) of the point where body 1 joins with body 2
through a pin-joint, and ~b is given by

~b ¼
Xn2

i¼1

k
½2�
i b
½2�
i (6)

Apart from Eq. (3), which is a two-dimensional vector equa-
tion, rest of the equations are scalar equations. Equation (1)
involves weighted sum of dot product of vectors. Equation (2) is
the same as Eq. (1) except that one of the vectors is turned by right
angle before taking the dot product. Equations (4) and (5) have
similar nature. In total, there are six equations that spring parame-
ters have to satisfy to ensure static balance.

As an example, consider the linkage in Fig. 2, where Z½2�1 and

Z½1�1 be the original spring loads on the linkage, and we would

want to balance the linkage by adding two springs Z½2�2 and Z½1�2 .
We would want to find the parameters of balancing springs—

a
½2�
2 ; b

½2�
2 ; k

½2�
2 ; a

½1�
2 ; b

½1�
2 ; k

½1�
2 —as solutions to Eqs. (1)–(5). This

constitutes a system of six scalar equations in ten unknowns, and
it turns out to be underdetermined system of equations with non-
unique solution.

We will first find the parameters of Z½2�2 and then that of Z½1�2 .

Equation (3) force a
½2�
2 to be in opposite direction of a

½2�
1 and inversely

proportional in magnitude to their respective spring constants. By

making a choice of k
½2�
2 ; a

½2�
2 can be determined. With this, Eqs. (1)

and (2) become linear equations in b
½2�
2 and it can be solved. Now, ~b

is found from Eq. (6). Further, by making a choice in the direction

and magnitude of a
½1�
2 and k

½1�
2 ; b

½1�
2 can be solved from Eqs. (4) and

(5). A feasible solution is presented in the table of Fig. 2.
The balancing procedure for a general linkage is similar to that

of 2R linkage with the number of static balancing equations being
roughly proportional to the number of links. Even though
Ref. [17] suggests strategies to solve the equations, multiple solu-
tions are inherent in the method. Hence, discretion of a designer
for resolving multiple solutions is essential.

1.1.2 Pin-Jointed Lever. In the pin-jointed lever shown in
Fig. 3, there is only one body, labeled as 1, which is attached to
the ground (body 0) with a pin-joint. The zero-free-length springs
attached from the ground to this body would be in static balance if
they satisfy

Xn1

i¼1

k
½1�
i b
½2�T
i

1 0

0 1

� �
a
½1�
i ¼ 0 (7)

Xn1

i¼1

k
½1�
i b
½2�T
i

0 �1

1 0

" #
a
½1�
i ¼ 0 (8)

These conditions were also obtained in Ref. [17] by setting the
coefficient of the joint angle-dependent functions to zero. Again,
as an illustration, the numerical parameters of the springs attached
in Fig. 3 are given in the table of the same figure. It may be veri-
fied that the springs do satisfy Eqs. (7) and (8).

1.2 Small-Length Flexure-Based Compliant Mechanisms
Approximated by Spring-Loaded Rigid-Body Linkages.
Small-length flexure model is applicable to compliant mecha-
nisms that are made up of flexures. One such compliant mecha-
nism is shown in Fig. 4(a). The deformation in the mechanism
occurs predominantly at the flexures with the remaining portion
being rigid. Small-length flexure approximation [1,20] replaces
the flexures by pin-joints with torsional springs, as shown in
Fig. 4(b). In the undeformed configuration, center of the pin-joint
coincides with the center of the flexure. Further, the torsional-
spring constant is the same as ratio of moment to relative rotation
between two ends of the flexure during a pure bending. This con-
stant is evaluated using Euler–Bernoulli beam theory as EI/l,
where E is the Young’ modulus, I is the moment of inertia of the
cross section of the flexure, and l is the length of the flexure. The
derivation of the constant is also shown in Fig. 4(c).

2 An Analytical Framework

We propose an analytical framework for using rigid-body-
linkage static balancing techniques on flexure-based compliant
mechanisms. We first apply the framework on a flexure beam
shown in Fig. 5 and follow it with a summary of the framework.

Fig. 3 A pin-jointed lever under the zero-free-length spring
loads
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2.1 Static Balancing of a Flexure Beam. The analytical
framework should reduce the effort involved in the actuation of a
compliant mechanism. Various functions can be taken to charac-
terize this effort. In the flexure beam of Fig. 5, fx versus ux may be
taken to characterize the effort, where ux is the horizontal dis-
placement of the top tip P when a horizontal force fx is applied at
the tip. After applying the analytical framework, we expect fx to
get reduced to a very small percent of its original value over a
range of values of ux.

In order to apply rigid-body static balancing techniques, we
apply small-length flexure approximation to obtain a torsional-
spring-loaded lever as shown in Fig. 6(2a). Since the static balanc-
ing technique of Deepak and Ananthasuresh [17] is to be applied
on a linkage loaded with zero-free-length springs, we next approx-
imate the torsional spring by a zero-free-length spring as shown in
Fig. 6(3a). For convenience, we refer to situations in various sub-
figures of Fig. 6 as case (#x), where (#x) is the subfigure label.
The parameters of the zero-free-length spring in case (3a) are
found based on matching fx versus ux function between cases (2a)
and (3a). In this paper, we base this match on having the constant
term and the first-order term of the Taylor’s expansion being the
same. In other words, fx and dfx=dux at ux¼ 0 being the same in
the two cases is the criteria for finding the parameters of the zero-
free-length spring. The significance of this choice will be
discussed later.

Consider case (2a). When external force fx acts on the linkage
at P, this will be in equilibrium with the torque exerted by the tor-
sional spring. From virtual work principle we have

0 ¼ �kthdhþ fxdux (9)

where dux is the virtual displacement corresponding to virtual tilt
dh (see Fig. 6(2a)). From Eq. (9), we have

fx ¼ kth
dh
dux

(10)

By differentiating fx with respect to h, we get

dfx
dh
¼ kt

dh
dux
þ kth

d

dh
dh
dux

� �
(11)

In the initial configuration, i.e., at h¼ 0, from Eqs. (10) and (11),
we have

fx ¼ 0;
dfx
dh
¼ kt

dh
dux

and
dfx
dux
¼ dfx

dh
dh
dux
¼ kt

dh
dux

� �2

(12)

All the quantities can be easily found through velocity analysis of
linkages [21]. In particular, dh=dux is 1=L. Hence, for case (2a), at
the reference configuration (h¼ 0) we have

Fig. 4 Rigid-body linkage approximation of a flexure-based
compliant mechanism

Fig. 5 A flexure-based lever

Fig. 6 Various cases in the analytical framework that is applied
to the flexure beam
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fx ¼ 0 and
dfx
dux
¼ kt

L2
(13)

Consider case (3a). We incorporate one zero-free-length spring
such that in the reference configuration, the spring is undeformed
just as the torsional spring in case (2a) is undeformed in the refer-
ence configuration. If the anchor point of the zero-free-length
spring is chosen to be at P, as shown in Fig. 6(3a), then the anchor
point on the ground is the position of point P in the reference con-
figuration. We have to find its spring constant, which is labeled as
kz. Similar to case (2a), for equilibrium, we have

0 ¼ �kzu � duþ fxdux (14)

Hence,

fx ¼ kzu �
du

dux
¼ kz ux þ uy

duy

dux

� �
(15)

and

dfx
dux
¼ kz 1þ uy

d

dux

duy

dux

� �
þ duy

dux

� �2
 !

(16)

At the reference configuration, ux¼ 0, uy¼ 0 and from velocity
analysis of linkages, duy=dux ¼ 0. Therefore, at the reference con-
figuration, we have

fx ¼ 0 and
dfx
dux
¼ kz (17)

By imposing that fx and dfx=dux match between cases (2a) and
(3a), we solve for kz as kt=L2. The zero-free-length spring-loaded
lever can be statically balanced by adding another zero-free-
length spring, as shown in Fig. 6(3b). The theory behind this was
explained in Sec. 1.1.2 along with an illustration in Fig. 3. Note
that the illustration was selected so as to be applicable to
case (3b).

Just as the addition of a balancing spring to case (3a) resulted in
a perfectly statically balanced case (3b), we expect that the addi-
tion of the same balancing spring to case (1a) should result in case
(1b) that is approximately statically balanced. The reason for such
an expectation is that case (3a) approximates the flexure beam of
case (1a) in terms of both kinematics and elastostatics. The func-
tion fx versus ux, which we have chosen as a metric to judge the
static balance, is plotted in Fig. 7 for both cases (1a) and (1b) over

a range of values of ux. The plot was obtained by large-
displacement linear elastic finite-element analysis using COMSOL

software. The numerical values for the parameters of the flexure
beam are as in Fig. 5. From the plot, it may be seen that the fx has
decreased to less than 30% of its original value. The length of the
range of ux is 0:1 m in comparison to 2L ¼ 0:4 m, the largest
dimension of the overall arrangement in case (1b).

One may improve the percentage of decrease by further opti-
mizing the balancing parameters. However, as discussed later, the
intent of this analytical framework is to provide simple tools for
conceptualization of statically balanced configuration which may
be later optimized for further improvements. Improvements could
include replacing the zero-free-length springs by more practical
normal springs or other compliant elements.

2.2 The Framework. Before we describe other examples, we
briefly enunciate the steps involved in the analytical framework
that can be applied for approximate static balance of a general
flexure-based compliant mechanisms.

Step 1: Identification of an effort function. The function that we
choose as a metric to judge the static balance, such as fx versus
ux in Sec. 2.1, is labeled as effort function. Identifying a suita-
ble effort function is the first step.
Step 2: Application of flexure approximation to the given
flexure-based compliant mechanism (case (1a)) in order to
obtain torsional-spring-loaded rigid-body linkage (case (2a)).
Step 3: Approximation of torsional springs by zero-free-length
springs to obtain case (3b). This approximation is performed by
having a match between cases (2a) and (3a) for the first few
terms of Taylor expansion of the effort function.
Step 4: Application of static balancing methods that add only
springs but not auxiliary links. This step results in perfectly bal-
anced case (3b).
Step 5: Incorporation of balancing spring of case (3b) into case
(1a) to obtain case (1b).

At the end of this framework, we will have zero-free-length
springs attached to the flexure-based compliant mechanism. We
now give two more illustrations that show the effectiveness of the
framework toward approximate static balance.

2.3 A Compliant Four-Bar Linkage. Figure 8(1a) shows a
compliant four-bar linkage both in the undeformed and a
deformed configuration. There are four flexures and all of them
have identical dimensions and elastic properties.

2.3.1 Step 1—Identification of Effort Function. E is a point at
the end of one of the flexures, as shown in Fig. 8(1a). fx versus ux

is taken as the effort function, where ux is the horizontal displace-
ment of point E for an applied horizontal force of magnitude fx.

Fig. 7 fx versus ux before (1a) and after (1b) application of the
analytical framework Fig. 8 A compliant four-bar linkage—cases (1a) and (2a)
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2.3.2 Step 2—Approximation With a Rigid-Body Linkage
Loaded by Torsional Springs. Application of small-length flexure
rigid-body linkage approximation to the compliant mechanism of
case (1a) (Fig. 8(1a)) leads to case (2a), as shown in Fig. 8(2a).
The details of the flexures of case (1a) and evaluation of torsional-
spring constant of the torsional springs of case (2a) are given in
the table of Fig. 8. In the undeformed configuration, the center of
flexures in case (1a) and, hence, center of pivot joints in case (2a)
form a quadrilateral, as shown in Fig. 9.

2.3.3 Step 3—Approximation of Torsional Springs by Zero-
Free-Length Springs. It is proposed to approximate the four tor-
sional springs of case (2a) by a single zero-free-length spring as in
Fig. 10(3a). In the undeformed configuration, the zero-free-length
spring has its two anchor points coincident at a height of 70 mm
above the pivot center A. In order to find the spring constant of the
spring, we find first two terms of the Taylor series expansion of fx
versus ux relation in both cases (2a) and (3a).

When the rigid-body linkage of cases (2a) and (3a) moves away
from the reference configuration, ai, i ¼ 1 � � � 4 of the quadrilateral
in Fig. 9 also change. Let these changes be represented as hi,
i ¼ 1 � � � 4, respectively. hi, i ¼ 1 � � � 4 are also the angular deflec-
tions of the torsional springs at the pivots A, B, C, and D, respec-
tively. For the linkage, under the action of the torsional springs
and the applied horizontal force fx at point E, the equilibrium
equation, through virtual work principle, takes the form

0 ¼
X4

i¼1

ð�kthidhiÞ þ fxdux (18)

Hence, we have

fx ¼
X4

i¼1

kthi
dhi

dux

� �
(19)

Further, in the reference configuration (hi ¼ 0, for i ¼ 1 � � � 4), we
have

dfx
dux
¼ kt

X4

i¼1

dhi

dux

� �2

(20)

Using dhi=dux that is found from velocity analysis in Fig. 9 and
the value of kt evaluated in the table of Fig. 8, at the reference
configuration, we get

dfx
dux
¼ 2:85 N=m 13:652 þ �16:75ð Þ2 þ 12:872 þ 9:682

� �
1

m2

¼ 2070:1 N=m (21)

Calculation with more precision than what is given in Fig. 9 gives
dfx=dux ¼ 2061:1 N=m. Thus, for case (2a), we have fx ¼ 0 N and
dfx=dux ¼ 2061:1 N=m at the reference configuration.

In case (3a), let the deflection of the zero-free-length spring be
represented by �u. The virtual work equation, under the action of
the external horizontal force fx at point E and the zero-free-length
spring, takes the following form:

0 ¼ �kz �u � d�u þ fxdux (22)

This implies that

fx ¼ kz�u �
d�u

dux
(23)

The derivative of fx versus ux at the reference configuration
(�u ¼ 0) is given by

dfx
dux
¼ kz

d�u

dux

� �
� d�u

dux

� �
(24)

At the reference configuration, from the velocity triangles of
Fig. 9, the horizontal component of d�u=dux is LP00=MP0 and the
vertical component is zero. Hence d�u=dux is kzðLP00=MP0Þ2,
which when measured from the velocity triangle becomes
0:912753kz.

At the reference configuration, the value of function fx versus ux

is zero in both cases (2a) and (3a). In order to also have the deriva-
tive of the function, which is also a coefficient of first-order term
in the Taylor’s expansion, to be the same we get the equation
0:912753kz ¼ 2061:1. From this equation, kz the spring constant

Fig. 9 Position and velocity analysis of the four-bar linkage in
the reference (undeformed) configuration

Fig. 10 Approximating torsional springs by zero-free-length
springs
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of the zero-free-length spring is solved as 2258:11 N=m. With
this, all the parameters of the zero-free-length spring in case (3a)
are evaluated.

2.3.4 Step 4—Perfect Static Balancing. In case (3a) (Fig. 10),
the zero-free-length spring is anchored from the ground to a link
that can kinematically be considered as a lever even though it is
part of a four-bar linkage. Hence, the static balancing solution
used for the lever of case (3a) (in Fig. 6) to obtain the lever of
case (3b) can be applied here as well. The solution consists of
adding a balancing zero-free-length spring which differs from the
original spring in that the ground anchor point is radially opposite
about the pivot of the lever. Application of this balancing solution
is shown in Fig. 11(3b).

2.3.5 Step 5. The balancing spring of case (3b) is incorporated
into case (1a) to obtain case (1b), as shown in Fig. 11. The
expected approximate static balance in case (1b) may be judged
from the plot of the effort function given in Fig. 12. A decrease in
the effort to about 30% for case (1b) in comparison to case (1a)
may be observed. In the plot, ux spans over 0:05 m around zero.
The plot was obtained through large-displacement linear elastic
finite-element analysis. One may want to compare the magnitude
of this span with the dimension of the smallest square box that
bounds the entire mechanism and the balancing spring. The side
of such a square box is about 0:2 m. Thus, the reduction of effort
is obtained for a range of motion that is one-fourth of the size of
the mechanism, which is substantial.

2.3.6 Prototype. A prototype was made to demonstrate the
reduction in effort of the flexure-based compliant four-bar mecha-
nism. A backside image of the prototype is shown in Fig. 13.
The prototype deviates from the example in one important respect.

It uses normal springs having finite free-length as balancing
springs. In fact, four-balancing springs are used, which are mostly
in parallel, except for little offset between anchor points. It may
be verified that when zero-free-length spring is replaced by a
nonzero-free-length spring in case (3b), the first-order balance is
retained only when the spring force at the reference configuration
for the latter spring matches that of the earlier spring. Therefore,
the balancing springs were chosen such that the net force of all of
them at the reference configuration is approximately the same as
what is exerted by the balancing spring of case (1b) of Fig. 11. A
provision has been made to change the number of active coils in
the four springs. Since the number of active coils in the springs
influences the force exerted by the springs, the number of active
coils was used as a tuning parameter to tune the behavior of the
prototype. During tuning, the following issues were noted:

(1) There is a significant shift in the equilibrium position of the
prototype when the balancing springs are added.

(2) As the spring forces are increased by decreasing the num-
ber of active coils, the force deflection behavior loses its
monotonicity and snap-through behavior sets in.

By tuning the number of active coils in the springs, the second
issue was marginally eliminated and the equilibrium configuration
was brought to the same configuration as that without balancing
springs. After tuning, the four springs have spring constants of
f0:68526; 0:62457; 0:50227; 0:50632gN=mm with free-lengths
of f72; 110; 77:5; 109gmm, respectively. A single spring that is
effectively equivalent to the four springs will have a spring

Fig. 11 Cases (3b) and (1b) in the analytical framework applied
on the compliant four-bar linkage

Fig. 12 Decrease in the effort function from case (1a) to case
(1b)

Fig. 13 A prototype to demonstrate reduction in effort
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constant of 2.32 N/mm and a free-length of 92 mm. An image of
the prototype is shown in Fig. 13.

The force–deflection relation of the prototype, before and after
the addition of the springs, is shown in Fig. 14. For the measure-
ments, a force was applied by a spring balance attached to a thread
that passes over the point E (see Fig. 11). The thread was main-
tained to be horizontal to ensure that the applied force is indeed
horizontal.

From Fig. 14, it may be seen that the force required to deflect
the prototype has reduced to about 40%. While making the proto-
type, we realized that practical considerations, such as availability
of prestressed zero-free-length springs, prevented the prototype
from accurately capturing the theoretical case. Furthermore, it
was shown in Ref. [19] that high loads on the flexure due to bal-
ancing springs can change the torsional stiffness of flexure. Our
framework does not take into account the effect of high loads on
the flexure due to balancing springs. In spite of these, we expected
the prototype to demonstrate a significant reduction in force even
though the reduction may not be as good as the analytical predic-
tion. To that extent, the prototype has demonstrated reduction in
actuation effort.

2.4 A Compliant “Two Degree-of-Freedom” Probe.
Figure 15 shows a flexure-based compliant probe at P. While in
Fig. 6 point P had very high stiffness in the vertical direction com-
pared to horizontal direction, here the stiffness of point P is com-
parable in all the directions of the plane. Hence, we are calling it a
two degree-of-freedom probe. We now apply the analytical frame-
work on this example.

2.4.1 Step 1. The function f versus u is taken as the effort
function, where u is the displacement of point P for an applied
force of f on point P, as could be seen in Fig. 15(1a). It may be

noted that unlike previous examples where the function was from
the set of real numbers to the set of real numbers, here it is a func-
tion from the set of two-dimensional real vectors to the set of two-
dimensional real vectors.

2.4.2 Step 2. The small-length flexure approximation is
applied on the compliant probe to obtain a 2R linkage loaded by
torsional springs, as shown in Fig. 15(2a). In the reference config-
uration, which corresponds to the undeformed configuration of the
compliant probe, the centers of the pivot A, B, and point P form a
right angled triangle corresponding to the Pythagorean triplet
{3, 4, 5}, as shown in Fig. 15(2a). Calculation of the torsional-
spring constants from the flexure details is given in Table 1.

2.4.3 Step 3. It is proposed to approximate the torsional
springs by zero-free-length springs, as shown in Fig. 16. There are
two zero-free-length springs: one attached to link AB and the
other attached to link BP. In the reference configuration, both the
zero-free-length springs are undeformed, i.e., their anchor points
coincide. While for the first spring, the anchor points are at the
coordinates of ð6:4 cm;�4:8 cmÞ, and the anchor points of the
second spring are at point P. The point at which the first spring
anchors to the linkage is labeled as E. In order to obtain the spring
constants of these springs (k1 and k2), we find the effort function f
versus u in cases (2a) and (3a).

Case (2a). The virtual work equilibrium equation in case (2a)
takes the following form:

0 ¼ �ktahadha � ktbhbdhb þ f � du (25)

Equation (25) may be rewritten in the following form:

ðKthÞTdh ¼ f Tdu (26)

where

h ¼ ha

hb

� �
; Kt ¼

kta 0

0 ktb

� �
; f ¼ fa

fb

� �
; and u ¼ ux

uy

� �

Let $uh represent the derivative of h with respect to u. Then,
using the arbitrariness of du, Eq. (26) may be rewritten as

ðKthÞT$uh ¼ f T or f ¼ ð$uhÞTKth (27)

Fig. 14 Force deflection relationship of the prototype

Fig. 15 A two degree-of-freedom compliant pointer and its
approximation as a rigid-body linkage loaded by torsional
springs

Table 1 Details of flexure and calculation of torsional-spring
constant

E Young’s modulus 205� 109 (Pa)
h Height of the flexure cross section 500� 10�6 (m)
b Width of flexure cross section 4� 10�2 (m)
I Area moment of inertia¼ bh3/12 4.1667� 10�13 (m4)
la Length of flexure corresponding to pivot A 1� 10�2 (m)
lb Length of flexure corresponding to pivot B 2� 10�2 (m)
kta Torsional-spring constant¼ EI/la 8.541667 (N�m)
ktb Second torsional-spring constant¼ EI/lb 4.270833 (N�m)

Fig. 16 Cases (2a) and (3a) in the analytical framework applied
on two degree-of-freedom probe
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Further, from Eq. (27), the derivative of f with respect to u at
the reference configuration (h ¼ 0) becomes

$uf ¼ ð$uhÞTKtð$uhÞ (28)

From the velocity analysis of the linkage, it follows that

ð$huÞ ¼ ð$uhÞ�1 ¼ 0 �ðBPÞref

APref 0

� �

¼ 0 �6� 10�2 m

8� 10�2 m 0

� �
(29)

where BPref and APref indicate the lengths of segments BP and AP
in the reference configuration. Substituting for $uh from Eq. (29)
and for kta and ktb from Table 1 into Eq. (28), we get

$uf ¼ 1186:342 0

0 1334:635

� �
ðN=mÞ (30)

Case (3a). Let the displacement of point E, where the first zero-
free-length spring is attached, be represented by �u. The virtual
work equilibrium equation in case (3a) takes the following form:

0 ¼ �k1d�uT�u � k2duTuþ duTf (31)

Let $u�u represent the derivative of �u with respect to u. Then,
Eq. (31) may be solved for f as

f ¼ k1ð$u�uÞT�u þ k2u (32)

The derivative of f with respect to u at the reference configuration
(u ¼ 0 and �u ¼ 0) becomes

$uf ¼ k1ð$u�uÞTð$u�uÞ þ k2I (33)

where I is the 2� 2 identity matrix. From the velocity analysis at
the reference configuration, it follows that

$h�u ¼ 0:8� 6 0

0:8� 8 0

� �
� 10�2m; $hu ¼ 0 �6

8 0

� �
� 10�2m

(34)

From calculus, it follows that

$u�u ¼ $h�u $huð Þ�1 ¼ 0:8

8

0 6

0 8

� �
(35)

Substituting Eq. (35) in Eq. (33), we get

$uf ¼ k2 0

0 k1 þ k2

� �
(36)

Finding k1 and k2. At the reference configuration, f ¼ 0 in both
cases (2a) and (3a). In order to also have the first-order terms of
the Taylor’s expansion of f versus u to be the same, we equate
$uf from case (2a) (Eq. (30)) and case (3a) (Eq. (36)) to solve for
k1 and k2 as

k2 ¼ 1186:342 N=m; and k1 ¼ 148:293 N=m (37)

2.4.4 Step 4. The linkage and the two springs in Fig. 16(3a)

are exactly same as the linkage and the springs Z½1�1 and Z½2�1 of
Fig. 2. As demonstrated in Fig. 2, incorporation of two more

springs Z½1�2 and Z½2�2 , the details of which are given in the same
figure, will lead to perfectly statically balanced linkage. These
springs are added to case (3a) to obtain case (3b), as shown in
Fig. 17.

Fig. 17 Cases (3b) and (1b) of the analytical framework applied
on the two degree-of-freedom compliant probe

Fig. 18 fx versus u plot in two different views

Fig. 19 fy versus u plot in two different views
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2.4.5 Step 5. The balancing springs Z½1�2 and Z½2�2 of case (3b)
are incorporated into case (1a) to obtain case (1b), as shown in
Fig. 17(1b). The expected decrease in the effort function may be
judged from Figs. 18 and 19, which show fx versus u and fy versus
u for both cases (1a) and (1b). It may be noted that in most
regions, the effort function for case (1b) is less than 30% of that
of case (1a). The largest deflection considered for u is about 20%
of the overall size of the arrangement of case (1b). These plots
were obtained from finite-element simulation using linear elastic
model with geometric nonlinearity.

2.5 Discussion. As could be noted from the results of Sec. 2,
the analytical framework leads to only approximate static balance.
However, one can run a numerical optimization on the parameters
of the balancing springs to further reduce the effort function. One
can also replace zero-free-length springs by normal springs or
compliant elements that would approximately exert similar forces.
This could be followed by an optimization on the parameters of
the normal springs or compliant elements with the objective of
reducing the effort function. In this paper, apart from the proto-
type where normal springs were used, we do not demonstrate such
an optimization since the intent of the framework is to provide
tools that help a designer to conceptualize new statically balanced
configurations. It is for this reason that the framework is kept sim-
ple and analytical with almost all its steps being amenable to
imagination of a mechanical designer.

3 Static Balancing of Compliant Mechanisms Using

Rigid-Body Linkages and Springs

While the earlier examples showed the applicability of the
method presented in the paper, we now consider another way of
utilizing static balance of rigid-body linkages for balancing a
compliant mechanism. Here, a compliant mechanism is modeled
as a load spring of a rigid-body linkage.

Figure 20 shows a geometric model of the gripper. The gray
portions are made of spring steel and the connecting brackets,
which have higher thickness, are made of aluminum. Deformation
takes places only in the spring-steel regions because their cross
section areas are much smaller compared to that of the aluminum

brackets. Figure 21 shows the schematic of only the static-
balancing linkage with its balancing spring k2. In this, the compli-
ant mechanism is modeled as a linear translational spring, k1. This
modeling is valid for a small range of motion. Therefore, the com-
pliant mechanism is made to be large in size as compared to the
balancing linkage. It should be noted that the entire compliant
mechanism is simply a “loading spring” for the rigid-body
linkage.

The linkage in Fig. 21 is statically balanced if [14]

k1l1 ¼ k2l2 (38)

Thus, by using a two body linkage and a balancing spring k2 in ac-
cordance with Eq. (38), we can balance a relatively large compli-
ant mechanism.

Fig. 20 Graphical representation of the gripper

Fig. 21 Planar representation of the model
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3.1 Design. Spring-steel strips of 1 mm thickness and lengths
of 180 mm (strips 1 and 8), 140 mm (strips 3–6), and 100 mm
(strips 2 and 7) were cut and assembled as in Fig. 22. The corner
bracket elements as shown in the figure are of aluminum and have
a uniform thickness of 3 mm and arm length of 40 mm on each
side.

The length of rigid link AB was assumed to be 80 mm with the
center at D. According to Eq. (38), the length of link CD was fixed
at 40 mm. The stiffness constant of spring CB was fixed at
550 N=m. The deductions and explanation for these assumptions
are given in Sec. 3.2. The following data are used in the further
calculations:

� Young’s modulus of spring steel¼ 200 GPa
� Young’s modulus of aluminum¼ 70 GPa
� Yield stress of spring steel¼ 550 MPa
� Yield stress of aluminum¼ 120 MPa
� Factor of safety for aluminum and spring-steel parts¼ 1

3.2 Linear Behavior and Displacement Range. Since our
main concern was to reduce the effort to deform the mechanism,
we concentrated only on forces and displacements of point P
(Fig. 20). Before calculating the forces, it was important to first
obtain the displacement range of the gripper within which the
mechanism displayed linear behavior, i.e., the force–displacement
curve is linear. Therefore, the model was simulated using a

finite-element software1 and the maximum displacement of point
P within linearity was found to be 60 mm (Fig. 23).

Further, the reaction forces at point P were calculated as well to
obtain the spring characteristics of the compliant mechanism. This
was used to select and tune the finite-length spring while simulta-
neously satisfying the governing principle in Eq. (38).

To avoid the rigid-body linkage from reaching a singular con-
figuration, the maximum deflection of zero-free-length spring BC
was required to have a value greater than the length of link CD.
Conversely, the length of link CD had to be assumed such that it
was less than the maximum spring deflection. Since the deflection
of the spring depends on linear characteristics of the compliant
mechanism, it can be seen that the length of link CD has to be less
than the deduced value of 60 mm. Therefore, as mentioned in
Sec. 3.1 and according to Eq. (38), the lengths of AB and CD were
assumed to be 80 mm and 40 mm, respectively.

3.3 Fabrication. While assembling the rigid-body linkages
and the spring according to the planar representation given in
Fig. 21, care was taken to incorporate the equivalence between
the finite-length spring and the theoretical zero-free-length spring.
For this, an arrangement shown in Fig. 24 was made, where the
fixed anchor point of the spring was considered to be a different
point F in the workspace. Further, it was ensured that the

Fig. 22 Compliant metallic gripper without static balancing

Fig. 23 Finite-element analysis of the model using COMSOL

Fig. 24 Compliant metallic gripper with static balancing

Fig. 25 Comparison of force–displacement relation of point P
without and with static balancing

1www.comsol.com
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inextensible string (a nylon thread) connecting points B and F
passed over point C at all times by making the string pass between
two small, parallel frictionless rollers assembled on link CD and
exactly over point C. Further, the actuator link containing point P
was made to pass through two big frictionless parallel rollers to
ensure that the applied force and displacement of point P were
unidirectional (perpendicular to gripper action), as shown in Fig.
24. All rolling and rotating actions were realized through high-
quality roller bearings.

It is can be observed from Fig. 25 that the effort needed to
deflect the compliant mechanism within its linear action domain is
reduced by three-fourths. However, according to the theory, the
effort should have been zero with static balancing. This deviation
from the theoretical case may be attributed to: (a) error in realiz-
ing a zero-free-length spring from a finite-length spring and (b)
error in the perpendicular alignment of direction of applied force
with the gripper action direction. Further, in spite of using low-
friction bearings, frictional effects such as hysteresis may be
present.

4 Conclusion

In this paper, we presented a simple analytical framework to
conceptualize solutions for static balancing of flexure-based com-
pliant systems. The framework employed two approximations:
small-length flexure-based pseudo-rigid-body model and approxi-
mation of torsional springs by zero-free-length springs. These
approximations were used in conjunction with known analytical
perfect balancing techniques for rigid-body linkages loaded by
zero-free-length springs. The static balancing solution involves
addition of zero-free-length springs to the compliant systems. The
framework was illustrated on three flexure-based compliant sys-
tems. The effectiveness of the framework was judged through
finite-element simulations as well as a prototype. The analytical
framework was kept simple so that it is amenable to the imagina-
tion of a designer, which in turn helps the designer to be creative.
The solution obtained from the framework could be made more
practical by replacing balancing zero-free-length springs by more
realistic force exerting elements followed by a numerical
optimization.

Additionally, a balancing example was also demonstrated
where balancing was accomplished by addition of both rigid-body
linkages and springs. Such a balancing could be useful when the
usage of rigid-body linkages does not deteriorate the overall per-
formance of a compliant system. Thus, based on the two
approaches presented here, we showed that compliant mecha-
nisms can be approximately balanced by deriving insights from

analytical perfect static balancing techniques developed for rigid-
body linkages.
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