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Compliant mechanisms

Rigid-body mechanisms

Equivalent compliant mechanism

Int. J. Solids and Structures
44(2007), pp. 6279-6298
With Jiten Patel
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Smooth transition of mobility

Rigid closed chain

Rigid serial chain

Elastic chain
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BRU coffee-jar lid
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Kinematic 
pairs

Rigid 
bodies

Elastic 
segments

Elastic 
pairs

rigid chains

elastic chains
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Kinematic pairs
• Lower pairs with surface contact

– Revolute (hinge-1 DoF)
• Surface of revolution

– Prismatic (slider-1 DoF)
• Prismatic surface

– Helical (screw-1 DoF)
– Cylindrical (2 DoF)
– Toroidal (2 DoF)
– Spherical (ball-socket-3 DoF)
– Planar (3 DoF)

• And there are many, many higher pairs with 
line or point contact

Specific shapes 
for contact 
surfaces
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Prefer hinges to sliders;
flexures to either.

A design principle espoused by M. J. French.
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Discrete compliance
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Elastic pairs
No specific 

shape

Elastic  1-DoF 
rotational 
pairs

Elastic 1-DoF 
sliding pairs

Elastic  2-DoF 
rotational 
pairs

With
Ashwin Rao
Santosh Bhargav
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1-DoF 
rotational 

elastic 
pairs

More than a dozen 
shapes for 1-DoF 
elastic rotational 
pairs!

Bendix elastic 
rotational pair
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Shapes of elastic pairs can be 
quite complicated.

You can even call them compliant 
mechanisms in their own right!

With Dinesh Mana

Awtar, 2003
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Distinguishing the pairs 
quantitatively

Kinematic
• Ideally…

– Zero stiffness along 
or about the intended 
axis.

– Infinite stiffness 
along or about all 
other five axes.

– Almost no cross-axis 
errors.

• Friction and 
backlash cause 
deviation from the 
ideal condition.

Elastic
• Ideally and realistically…

– Finite but low stiffness along or 
about the intended axis.

– Finitely large stiffness along or 
about all other five axes.

– Finite cross-axis errors

• Friction and backlash are 
absent.

• Viscoelastic behavior may 
cause deviations.

• Axis may drift.
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Multi-axis stiffness 
of an elastic pair
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Elastic deformation analysis, analytical or numerical, via the 
compliance matrix can be used to compute K.
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Computing the 
multi-axis compliance matrix
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K C

Up to six analysis runs…
Three finite element analysis runs in 2D.
Six finite element analysis runs in 3D.
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No joints (pairs) at all

Anchored
Force

Displacement

A compliant mechanism 
with elastic segments

Distributed compliance
No elastic pairs.
Uniformly distributed deformation.
Large displacement with small strain.
Stronger than elastic pairs.
Enhanced scope for design.

Elastic segments 
instead of 
elastic pairs.
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A compliant gripper
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Compliant Mechanism: the definition

• A mechanism that uses elastic deformation 
to transmit or transform force, motion, and 
energy.

Replace many parts with one part.
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Transmission

Transmission
• Amplify force or motion
• Change direction
• Change the dynamics
• Change state

With
Anupam 
Saxena and 
Luzhong
Yin
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Soil-moisture sensor (no electrical power):
swelling of a super-adsorbent polymer + 

mechanically amplified motion

21
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22

Holder

Soil Sample 
Holder

Dial

Suggestive remarks as per 
the crop and soil

Indicator

Neer Samiksh
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Soil-moisture sensor
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Transmission is fine;
transformation?

Transduction
• Convert non-mechanical 

energy into mechanical 
energy and vice versa.

• Smart or active materials

With Moulton
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Monolithic 
(uni-body; single-piece) 
construction • Ease of manufacture – reduced or 

no assembly

Ananthasuresh and 
Saggere, 1994

Elastic pair
Elastic segment
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Monoform compliant designs 
from FlexSys

Shape-shifting Things to Come
Sridhar Kota
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One inside the other…
multi-scale graspers

With
Nandan Maheswari
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Stiffness matched to that of the 
biological cells

Force estimated to deform the zerbafish embryo by 150 µm is 
1.2 mN. Thus the bulk stiffness is about 8 N/m

All dimensions are in mm

10

10
1.7

0.7

Pockets

Zebrafish egg squeezing

Zebrafish egg rolling
Too soft for drosophila embryo

MCF-7 cell grasping

With
Santosh 
Bhargav
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Squeezing a zebrafish egg… for 
mechanical characterization
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Tuning stiffness… by 
combining

Gripper + DaCM => 
Stiffness tuning + GA 

Contact 
points

Pulling 
mechanism

Compliant 
clamp

Suspension 
beams

Stretch too…

With
Santosh 
Bhargav
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No more rubbing the wrong way

Input force

Output motion
• Ease of manufacture – reduced or 

no assembly
• Ability to withstand overloads –

“I bend but I break not.”
• Less or no friction and wear
• No backlash problem – more 

precision

Prefer hinges to sliders,
flexures to either.
- M. J. French
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Real applications
• Ease of manufacture – reduced or 

no assembly
• Ability to withstand overloads –

“I bend but I break not.”
• Less or no friction and wear
• No backlash problem – more 

precision
• Aesthetics made easier
• Economy of material and less cost 

for better performance

Prof. Larry Howell
Brigham Young University

Over-running and one-way clutches

Gahring and Ananthasuresh
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Mission-adaptive compliant wings

Prof. Sridhar Kota, University of Michigan
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Morphing wing surface

Shape-shifting 
Things to Come
Sridhar Kota
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Currently under further development by Endovalve, Inc., USA
Patent
“Percutaneous Heart Valve,” Patent application #. 
PCT/US2004/023211 dated 20th July, 2004 (H.C. Hermann and 
N. Mankame, G.K. Ananthasuresh)

An artificial heart valve
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Improved 
micromachined accelerometers

With
Sambuddha 
Khan
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External pipe-crawler

A compact ring-actuator
Inchworm concept

With
Puneet 
Singh et al.
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Micron: a force sensor

Output

Input

Deformation analysis

Evaluation: effective stiffness of 26.N/m or 
2.6uN /um

~2 µN resolution
~ 1 mN range

Baichapur, 
Bhargav, Gulati, 
Maheswari, and 
Ananthasureh, 
2012
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MicroN
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These are good wheels!

Tweel from Michelin.
Non-pneumatic tire from IISc.

ME project report, G. Bhargav, 2008.



Ananthasuresh, IISc

Almost any type of motion

• Displacement 
amplification

• Curved paths
• Non-smooth paths
• Frequency tuning
• Constant-force
• Actuator characteristic 

modification
• Etc.

• Ease of manufacture – reduced or 
no assembly

• Ability to withstand overloads –
“I bend but I break not.”

• Less or no friction and wear
• No backlash problem – more 

precision
• Aesthetics made easier
• Economy of material and less cost 

for better performance
• Any type of motion
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Non-smooth curved paths
Mankame, N. and Ananthasuresh, 

G.K., Journal of Mechanical 
Design. 126(4), 2004, pp. 
667-672.

Mankame, N. D. and 
Ananthasuresh, G. K., 
International Journal of 
Numerical Methods in 
Engineering, 69 (12), 2007, 
pp. 2564-2605.

Movie
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Non-smooth motion 
with smooth input 

using compliant mechanisms
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Actuator characteristic modification

Pedersen, C. B. W., Fleck, N. A. and Ananthasuresh, G. K., Journal of Mechanical Design, 128(5), 2006, pp. 1101-1112.
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Micromechaical signal 
processors

• Band-pass filters
• Switches and 

relays
• Amplifiers
• Frequency-

translators
• Clocks

Output  
side

input  
side

With
Sambuddha 
Khan and 
Nirmit Dave
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Separating x-y signals
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Is compliant design difficult?

• Some people think so. It may be because…
– you need to deal with elastic deformation.
– you need to deal with elastic pairs and elastic 

segments as opposed to discrete rigid bodies.

• It is in fact easy once we pay attention to…
– what benefits we can achieve with deformation
– deformation mechanics in addition to kinematics
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• Empirical modeling of 
elastic pairs

• Elastica analysis of 
beam segments

• Pseudo Rigid-Body 
(PRB) modeling

• Finite element 
analysis

• Spring-Lever (SL) and 
Spring-Mass-Lever 
(SML) modeling

• Compliant ellipsoid 
modeling

• Non-dimensional 
maps

• Kinetostatic synthesis 
using PRB modeling

• Topology and shape 
optimization

• Selection and re-design
• Instant-centre method
• Design using building 

blocks
• Pragmatic design with 

non-dimensional maps
• Intuitive design using a 

kit

Models for analysis Synthesis methods
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