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Abstract. Johann Bernoulli’s brachistochrone problem is now three hundred years old.
Bernoulli’s solution to the problem he had proposed used the optical analogy of Fermat’s least-time
principle. In this analogy a light ray travels between two points in a vertical plane in a medium of
continuously varying index of refraction. This solution and connected material are explored in this
paper.

1. Introduction

It is now three hundred years since Johann Bernoulli challenged the world with his
brachistochrone problem. The statement of the problem is deceptively simple. We quote
the English translation of Bernoulli’s words from Struik’s excellent book:

‘Let two points A and B be given in a vertical plane. To find the curve that a point M,
moving on a path AMB, must follow that, starting from A, it reaches B in the shortest
time under its own gravity.’ [1, p 392]

This challenge to the world was originally published in theActa Eruditorumfor June 1696.
Bernoulli’s own solution to the problem was published in theActa Eruditorumfor May

1697. This solution utilized Fermat’s optical priciple of least time. Fermat’s least-time
principle is equivalent to the optical law of refraction. The brachistochrone problem is
considered to be one of the foundational problems of the calculus of variations. The standard
method in that field now uses the Euler–Lagrange equation. Bernoulli’s 1697 solution, which
did not use the Euler–Lagrange equation, is of great interest to both mathematicians and
physicists. It is discussed by both Struik [1, p 392] and Goldstine [2, p 30]. In this paper we
also include a discussion of Galileo’s earlier least-time problem which has sometimes been
confused with Bernoulli’s brachistochrone problem.

2. Galileo’s problem of the swiftest descent to the bottom of a circle

In an earlier paper [3] we discussed the fastest descent problem of Galileo as found in the
Scholium to Proposition 36 of hisTwo New Sciences[4, pp 212–3]†. There we remarked on a

† There is also an earlier translation by Crew and de Salvio [5].
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Figure 1. Galileo’s diagram for his Scholium to
Proposition 36 (re-drawn from the figure appearing in
Crew and de Salvio [5, p 239]).

Figure 2. Galileo’s least-time problem, re-drawn from
the figure appearing in hisDialogue Concerning the Two
Chief World Systems[6, p 451]).

minor ‘incompleteness’ in Galileo’s proof. At the end of the paper a challenge was issued to
fill in the incompleteness. To date nobody has come forward to complete Galileo’s proof.

It is important to distinguish between Galileo’s Scholium problem and the similar, but
very different, Bernoulli brachistochrone problem. Figure 1 shows Galileo’s diagram for his
Scholium problem. In this problem one is limited to a single plane, or sequence of connected
planes which have their end points on a quarter circle, or on an arc no greater than a quadrant of
the circle. One seeks the sequence of planes which will yield the minimum time for a particle
to slide frictionlessly from the upper point on the circle down to the bottom of the circle. It is
assumed that the transition from one inclined plane to another occurs smoothly and with no
loss of time.

In Bernoulli’s brachistochrone problem one has two points at different elevations and one
seeks the minimum-time curve for a particle to slide frictionlessly from the higher point to the
lower point. The well known answer to the Bernoulli problem is the unique cycloid extending
from the higher point to the lower point. The less well known answer to the Galileo problem
is the infinite sequence of planes extending from the starting point to the bottom of the circle,
i.e. the circle arc itself extending from the upper point to the bottom of the circle.

The Galileo problem is mentioned in both of his major works. In theTwo New Sciences
it is the topic of his Scholium to Proposition 36 of the Third Day. Drake’s footnote to the
Scholium is misleading and may be part of the reason that scholars have confused Galileo’s
problem with Bernoulli’s problem. In footnote 48 to Galileo’s statement of the Scholium,
Drake wrote:

‘All that could properly be deduced was that the shortest descent is along some kind
of curve. The curve is in fact only approximately circular, and was later shown to be
cycloidal’ [4, p 213].

As we have pointed out, Galileo’s problem included the ‘circular constraint’, i.e. the constraint
that the end-points of the inclined planes be on the vertical circle, so that a cycloidal arc was
not a possible solution to Galileo’s minimum time to the bottom problem.

In theDialogue Concerning the Two Chief World Systems[6] the least time to the bottom
of the vertical circle is mentioned on p 451. Referring to his figure which shows the lower
quadrant of a vertical circle, here shown as our figure 2, Galileo said:
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Figure 3. Refraction of a light ray.

‘The motions of bodies falling along the arcs of the quadrant AB are made in shorter
times than those made along the chords of the same arcs, so that the fastest motion,
made in the shortest time, by a movable body going from the point A to the point
B will be along the circumference ADB and will not be that which is made along
the straight line AB, although that is the shortest of all the lines which can be drawn
between the points A and B.’

Unfortunately, if this quotation is not seen in the context of the circular constraint Galileo’s
problem is liable to be misread as Bernoulli’s brachistochrone problem. Among prominent
writers who have made this misidentification, we mention Herman Goldstine [2, p 30]†.

3. The optical analogy

The fundamental law of refraction is most often referred to as Snell’s Law in physics texts. In
its most common form it is written as

n1 sini = n2 sinr

wherei is the angle of incidence andr is the angle of refraction. Then’s are the indices of
refraction of the two media, with the index being defined as the speed of light in vacuum over
the speed in the medium, i.e.

n = c

v
.

Snell’s law can therefore be rewritten as
sini

vi
= sinr

vr
.

The angle of incidence is defined as the angle between the incident ray of light and the normal,
and the angle of refraction is defined as the angle between the refracted ray of light and the
normal. The optical analogy to Bernoulli’s problem is a ray of light penetrating through an
infinite sequence of horizontal, differentially thin, optical media of decreasing optical density.
The ray of light will follow a curved path. As the speed in the medium increases the angle of
refraction increases. In figure 3 we show a ray of light Mm and its angle of refraction. Fermat’s
principle states that a light ray will take the path between two points which minimizes the time
to go between the two points. Fermat’s principle is a mathematically elegant way of stating
Snell’s law of refraction. We can now understand Johann Bernoulli’s optical–mechanical
solution of his brachistochrone problem.

† We also note this misidentification in a lecture given in 1985 by C Truesdell and published in [7].
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Figure 4. Johann Bernoulli’s diagram for the brachistochrone problem (re-drawn from the figure
appearing in [1, p 394].

The angle of refraction continually increases in this optical analogy. The constantly
increasing speed of the particle sliding down the brachistochrone curve corresponds to a light
ray proceeding along that curved optical path as it penetrates through an optical medium of
ever-decreasing optical density.

4. Johann Bernoulli’s diagram

We are now ready to present the main diagram from Johann Bernoulli’s solution to his
brachistochrone challenge problem. The challenge to the world was issued in theActa
Eruditorium of June 1696. Figure 4, Bernoulli’s diagram, shows the medium FGD and the
luminous point A.

The least-time light path from A to K is the brachistochrone solution. We draw the
reader’s attention to the infinitesimal ‘triangle of refraction’ Mmn. The angle between Mm
and the vertical is the angle of refraction. The brachistochrone curve is the curve ABMK,
which Bernoulli will find to be a cycloid. The analogy to the particle picking up speed as
it descends the cycloid is the increasing speed of the light particle as it enters regions of
lower optical density. As the index of refraction decreases the speedv of the light particle
increases. The curve AHC on the left in Bernoulli’s diagram represents this increase in speed
as the mechanical–light particle descends. From the mechanics of freely falling bodies it is
well known that the square of the speed is proportional to the distance of fall. In Bernoulli’s
problem this is implemented as

v2 = constant× x
wherev is the velocity andx is the distance of fall. In terms of figure 4, we have

v = velocity= CH

x = distance of fall= AC.

The distance CM is denoted byy. Thus,x andy are the rectangular coordinates of the particle
with respect to the starting point at A.

y = horizontal coordinate= CM

x = vertical coordinate= AC.

The key to the solution is the law of refraction. We have seen that sinr/v = constant
or sinr = kv, i.e. the sine of the angle of refraction is proportional to the light speed in the
medium. Referring to the differential triangle Mmn in Bernoulli’s figure, we see that

Mn = dx nm= dy Mm = dz =
√

dx2 + dy2.
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Substituting this into the law of refraction, we have

sinr = kv
dy

dz
= kv

dy = kv dz = kv
√

dx2 + dy2.

If we replace the constantk by Bernoulli’s constant 1/a and solve for dy, we obtain

dy = v dx√
a2 − v2

.

This is the differential equation for the brachistochrone curve ABM. Bernoulli triumphantly
declared:

‘In this way I have solved at one stroke two important problems – an optical and a
mechanical one – and have achieved more than I demanded from others: I have shown
that the two problems, taken from entirely separate fields of mathematics, have the
same character.’ [1, p 394]

The optical least-time path can be found by specifying the speed of light through the various
media. The mechanical problem is the brachistochrone problem and the least-time path is
found by specifying the varying speed of the particle along the path. As we mentioned above,
the speedv along the path, starting from descent at point A, is given byv2 = constant× x.
Bernoulli writes the valuea for the constant and substitutesv2 = ax in his ‘optical’ least-time
differential equation. One finds

dy = dx

√
x

a − x .
Bernoulli expands the square root as follows:√

x

a − x =
1

2

a dx√
ax − x2

− 1

2

a dx − 2x dx√
ax − x2

.

Integrating, we find

y = a sin−1

√
x

a
−
√
ax − x2.

To show that this is a cycloid one can use the trigonometric substitution

x = 1
2a(1− cosθ).

This yields

y = a sin−1(sin 1
2θ)− a sin 1

2θ

√
1
2(1 + cosθ)

= 1
2aθ − 1

2a sinθ.

If we now make the further substitution

r = 1
2a

we get

y = rθ − r sinθ.

This, coupled with the original substitution

x = r(1− cosθ)

allows us to recognize Bernoulli’s brachistochrone as a standard cycloid generated by a wheel
of radiusr (or diameter GK) which rolls to the right without slipping along the line FAG in
Bernoulli’s diagram.



304 H Erlichson

5. Conclusion

We have reviewed Johann Bernoulli’s 1697 solution of his least-time problem and remarked
upon the connection with the earlier problem of Galileo’s Scholium to Proposition 36. Bernoulli
was impressed that the solution of the least-time problem was the same as the cycloid of
Huygens. Huygens had been involved with the cycloid because he was interested in building
a perfect clock. It was known to Huygens that for a pendulum descending a circular arc the
time to the bottom was a function of the size of the circular arc. Only in the limit of the
small-angle approximation could a pendulum be considered isochronous. Huygens found out
that the curve along which a pendulum would have to descend to be exactly isochronous was a
cycloid. Bernoulli saw this identity between Huygens’ equal vibration time for his clock (the
tautochrone) and the solution for the least time of fall between two points (the brachistochrone)
as an example of the simplicity of Nature.
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