1. Minimum of a function, f(x)

Global minimum

 x^* is global minimizer of f(x) if $f(x^*) \le f(x) \ \forall x$ in a feasible interval of x. This is just a definition, not a condition.

Local minimum

 x^* is a local minimizer of f(x) if $f(x^*) \le f(x)$ in a small neighborhood of x^* in the feasible interval of x

N = small neighborhood = $\left\{ x \middle| x \in S \text{ with } \middle| x - x^* \middle| < \delta \right\}, \ \delta > 0$

This is also a definition, not a condition

Condition for a local minimum

Necessary condition: $\frac{df}{dx}\Big|_{*} = 0$

Sufficient condition: $\frac{d^2f}{dt^2} > 0$

 $\left. \frac{d^2 f}{dx^2} \right|_{x^*} > 0$

What happens if
$$\frac{d^2 f(x^*)}{dx^2} = 0$$
?
Look at $\frac{d^3 f(x^*)}{dx^3}$.

Look at
$$\frac{d^3 f(x^*)}{dx^3}$$

$$\frac{d^3 f(x^*)}{dx^3} = 0$$
 Necessary condition

$$\frac{d^4 f(x^*)}{dx^4} > 0$$
 Sufficient condition

E.g.
$$f(x) = x^4$$

 $f'(x) = 4x^3 \implies x^* = 0$
 $f''(x) = 12x^2 = 0$
 $f'''(x) = 24x = 0 \implies x^* = 0$
 $f^{iv}(x) = 24 > 0$ $x^* = 0$ is a minimizer

Necessary condition

Ananthasuresh, IISc, Jan., 2013

2. Minimization in several variables

$$\frac{\partial f}{\partial x_i} = 0 \qquad i = 1, 2, \dots n$$

Taylor Series:

$$f(x^*) = f(\overline{x}^*) + \sum_{i=1}^n \frac{\partial f(\overline{x}^*)}{\partial x_i} (x_i - x_{i0}) + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f(\overline{x}^*)}{\partial x_i \partial x_j} (x_i - x_{i0}) (x_j - x_{j0}) + O(3)$$

$$+ \overline{\nabla} f^{T}(\overline{x}^{*}) \delta \overline{x} + \frac{1}{2} \partial \overline{x}^{T} \overline{H}(\overline{x}^{*}) \partial \overline{x} + O(3)$$

A special saddle point

plot of
$$z = x^3 + y^3$$

Ananthasuresh, IISc, Jan., 2013

where,

$$\overline{\nabla} f(\overline{x}) = \begin{cases}
\frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial x_2} \\
\vdots \\
\frac{\partial f}{\partial x_n}
\end{cases}$$
Gradient of f w.r.t \overline{x}

$$\overline{H}(\overline{x}) = \begin{cases}
\frac{d^2 f}{dx_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{d^2 f}{dx_2^2} & \dots & \vdots \\
\vdots & \dots & \dots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \dots & \dots & \frac{\partial^2 f}{\partial x_n \partial x_n}
\end{cases}$$
Hessian

(1st order) necessary condition:

$$\overline{\nabla} f(x^*) = 0$$

(2nd order) sufficienct condition:

$$\underbrace{\frac{1}{2} \delta \, \overline{x}^{*T} \, H^* \, \delta \, \overline{x}^* > 0}_{qudratic \, form}$$

Quadratic form $\delta \overline{x}^{*T} \overline{H}^* \delta \overline{x}^*$	\overline{H}	Eigen values of $ar{H}$	Nature of x^*
Positive	PD	All are positive	Local min
Negative	ND	All are negative	Local max
Non-negative	PSD	Some zero, others positive	Probably valley with flats.
Non-positive	NSD	Some zero, others negative	Probably ridge or
Any sign	Indefinite	Mixed signs	Saddle point