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II. First variation of functionals 
 
The derivative of a function being zero is a necessary condition for the extremum of that 
function in ordinary calculus. Let us now tackle the question of the equivalent of a derivative 
for functionals because it plays the same crucial role in calculus of variations as does the 
derivative of the ordinary calculus in minimization of functions. Let us begin with a simple 
but a very important concept called a Gâteaux variation. 
 
Gâteaux variation 
 
The functional ( )J xδ  is called the Gâteaux variation of J  at x  when the limit that is 
defined as follows exists. 
 

        ( ) ( )
0

( ; ) lim
J x h J x

J x h
ε

ε
δ

ε→

+ −
=  where h  is any vector in a vector space, X . 

 
Let us look at the meaning of h  and ε  geometrically. Note that ,x h X∈ . Now, since x  is 
the unknown function to be found so as to minimize (or maximize) a functional, we want to 
see what happens to the functional ( )J x  when we perturb this function slightly. For this, we 
take another function h  and multiply it by a small number ε . We add hε  to x  and look at 
the value of ( )J x hε+ . That is, we look at the perturbed value of the functional due to 
perturbation hε . This is the shaded area shown in Fig. 1 where the function x  is indicated by 
a thick solid line, h  by a thin solid line, and x hε+  by a thick dashed line. Next, we think of 
the situation of ε  tending to zero. As 0ε → , we consider the limit of the shaded area divided 
by ε . If this limit exists, such a limit is called the Gâteaux variation of ( )J x  at x  for an 
arbitrary but fixed vector h . Note that, we denote it as ( ; )J x hδ  by including h  in defining 
Gâteaux variation. 
 

 
Figure 1. Pictorial depiction of variation hε  of a function x  

                        
Although the most important developments in calculus of variations happened in 17th and 18th 
centuries, this formalistic concept of variation was put forth by a French mathematician 
Gâteaux around the time of the first world war. So, one can say that intuitive and creative 
thinking leads to new developments and rigorous thinking  makes them mathematically sound 
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and completely unambiguous. To reinforce our understanding of the Gâteaux variation 
defined as above, let us relate it to the concept of a directional derivative in multi-variable 
calculus. 
 
A directional derivative of the function ( )1 2, ,........., nf x x x  denoted in a compact form as 

( )f x  in the direction of a given vector h  is given by 

              
( ) ( )

0
lim

f x h f x
ε

ε

ε→

+ −
. 

Here the “vector” is the usual notion that you know and not the extended notion of a “vector” 
in a vector space. We are using the over-bar to indicate that the denoted quantity consists of 
several elements in an array as in a column (or row) vector. You know how to take the  
derivative of a function ( )f x  with respect to any of its variables, say , 1ix i n≤ ≤ . It is 

simply a partial derivative of ( )f x  with respect to ix . You also know that this partial 

derivative indicates the rate of change of ( )f x  in the direction of ix . What if you want to 

know the rate of change of ( )f x  in some arbitrary direction denoted by h ? This is exactly 
what a directional derivative gives. 
 
Now, relate the concept of the directional derivative to Gâteaux variation because we want to 
know how the value of the functional changes in a “direction” of another element h  in the 
vector space. Thus, the Gateaux variation extends the concept of the directional derivative of 
finite multi-variable calculus to infinite dimensional vector spaces, i.e., calculus of 
functionals. 
 
Gâteaux differentiability 

If Gateaux variation exists for all h X∈  then J  is said to be Gateaux differentiable. 

Operationally useful definition of Gâteaux variation 

Gateaux variation can be thought of as the following ordinary derivative evaluated at 0ε = . 
 

                   ( ) ( )
0

; dJ x h J x h
d ε

δ ε
ε =

= +  

 
This helps calculate the Gâteaux variation easily by taking an ordinary derivative instead of 
evaluating the limit as in the earlier formal definition. Note that this definition follows from 
the earlier definition and the concept of how an ordinary derivative is defined in ordinary 
calculus if we think of the functional as a simple function of ε . 
 
Gâteaux variation and the necessary condition for minimization of a functional 
 
Gâteaux variation provides a necessary condition for a minimum of a functional. 
 
Consider   where ( ) ,     ,J x x D∈  is an open subset of a normed vector space X  and *x D∈  
and any fixed vector h X∈  
 
If *x  is a minimum, then   
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    ( ) ( )* * 0J x h J xε+ − ≥  
 
must hold for all sufficiently small ε  
 
Now,   
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ensures the existence of this limit

( ; ) 0J x hδ= =
14444244443

 

 
This simple derivation proves that the Gâteaux variation being zero is the necessary condition 
for the minimum of a functional. Likewise we can show (by simply reversing the inequality 
signs in the above derivation) that the same necessary condition applies to maximum of a 
functional.  
 
Now, we can state this as a theorem since it is a very important result. 

Theorem: necessary condition for a minimum of a functional  

  
            ( )*; 0   for all J x h h Xδ = ∈  
 
Based on the foregoing, we note that the Gâteaux variation is very useful in the minimization 
of a functional but the existence of Gateaux variation is a weak requirement on a functional 
since this variation does not use a norm in X . Thus, it is not directly related to the continuity 
of a functional. For this purpose, another differential called Fréchet differential has been put 
forth. 
 
Frechet differential  
 

                    
( ) ( ) ( )

0

;
0lim

h

J x h J x dJ x h
h→

+ − −
=  

 
 
If the above condition holds and ( );dJ x h  is a linear, continuous functional of h , then J  is 
said to be Fréchet differentiable at x  with “increment” h .  
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( );dJ x h  is called the Fréchet differential. 

 
If  J  is differentiable at each x D∈  we say that J  is Fréchet differentiable in D . 
 
Some properties of Fréchet differential  
 

i) ( ) ( ) ( ) ( ); ;J x h J x dJ x h E x h h+ = + +  for any small non-zero h X∈  has a limit 
 zero at the zero vector in X . That is, 
 
       ( )

0 in 
lim ; 0

h X
E x h

→
= . 

  
 Based on this, sometimes the Fréchet differential is also defined as follows. 
 

  
( ) ( ) ( )

0

;
0lim

h

J x h J x dJ x h
h→

+ − −
= .  

 
ii)  ( ) ( )1 1 2 2 1 1 2 2; ; ( ; )dJ x a h a h a dJ x h a dJ x h+ = +  must hold for any numbers 1 2,a a K∈     

and any 1 2,h h X∈ .       
 This is simply the linearity requirement on the Fréchet differential. 
 
iii)  ( ); constant    for all dJ x h h h X≤ ∈    
 This is the continuity requirement on the Fréchet differential. 
 
iv)  ( ) ( )

{
Frechet 
derivative

;dJ x h J x h′=   

This is to say that the Fréchet differential is a linear functional of h . Note that it also 
introduces a new definition: Fréchet derivative, which is simply the coefficient of h  
in the Fréchet differential. 

 
Relationship between Gâteaux variation and Fréchet differential  
 
If a functional J  is Fréchet differentiable at x  then the Gateaux variation of J  at x   
exists and is equal to the Fréchet differential. That is, 
 
 ( ) ( ); ;    for all   J x h dJ x h h Xδ = ∈  
 
Here is why: 
 
Due to the linearity property of ( );dJ x h , we can write 
 
  ( ) ( ); ;dJ x h dJ x hε ε=  
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Substituting the above result into property (i) of the Fréchet differential noted earlier, we 
get 
 
 ( ) ( ) ( ) ( ); , for any J x h J x dJ x h E x h h h Xε ε ε ε+ − − = ∈  
 
A small rearrangement of terms yields 
 

 ( ) ( ) ( ) ( ); ,
J x h J x

dJ x h E x h h
εε

ε
ε ε

+ −
= +  

 
When limit 0ε →  is taken, the above equation gives what we need to prove: 
 

 ( ) ( ) ( ) ( ) ( )
0 0

lim ; ;     because lim , 0
J x h J x

J x h dJ x h E x h h
ε ε

εε
δ ε

ε ε→ →

+ −
= = =  

 
Note that the latter part of property (i) is once again used above. 
 

Operations using Gateaux variation   
 
Consider a simple general functional of the form shown below. 
 

( ) ( ) ( )( )

( )

2

1

,  ,   

where 

x

x

J y F x y x y x dx

dyy x
dx

′=

′ =

∫
 

 
Note our sudden change of using x . It is no longer a member (element, vector) of a normed 
vector space X . It is now an independent variable and defines the domain of ( )y x , which is 
a member of a normed vector space. Now, ( )y x  is the unknown function using which the 
functional is defined. We need to have our wits about you to see which symbol is used in 
what way! 
 
If we want to calculate the Gâteaux variation of the above functional, instead of using the 
formal definition that needs an evaluation of the limit we should use the alternate 
operationally useful definition—taking the ordinary derivative of ( )J y hε+  with respect to 
ε  and evaluating at 0ε = . In fact, there is an easier route that is almost like a thumb-rule. 
Let us find that by using the derivative approach for the above simple functional. 
 

( ) ( ) ( ) ( ) ( )( )
2

1

,  + ,  
x

x

J y h F x y x h x y x h x dxε ε ε′ ′+ = +∫  

 

Recalling that ( ) ( )
0

; dJ x h J x h
d ε

δ ε
ε =

= + , we can write 
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( ) ( )

( ){ }
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2

1
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                     ,  + ,  

x

x

x

x

d dJ x h F x y h y h dx
d d

d F x y h y h dx
d

ε ε ε
ε ε

ε ε
ε

⎧ ⎫⎪ ⎪′ ′+ = +⎨ ⎬
⎪ ⎪⎩ ⎭

′ ′= +

∫

∫
 

 
Please note that the order of differentiation and integration have been switched above. It is a 
legitimate operation. By using chain-rule of differentiation for the integrand of the above 
functional, we can further simplify it to obtain 
 

( ) ( ) ( )
2 2

1 10

;
x x

x x

F F F FJ x h h h h h dx
y h y h y y

ε

δ
ε ε

=

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂′ ′= + = +⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′∂ + ∂ + ∂ ∂⎝ ⎠⎝ ⎠
∫ ∫ . 

 
What we have obtained above is a general result in that for any functional, be it of the form 

( , , , , , )J x y y y y′ ′′ ′′′L , we can write the variation as follows. 
 

( )
2 2

1 1

; ( , , , , , )
x x

x x

F F F FJ x h F x y y y y dx h h h h dx
y y y y

δ
⎛ ⎞∂ ∂ ∂ ∂′ ′′ ′′′ ′ ′′ ′′′= = + + + +⎜ ⎟′ ′′ ′′′∂ ∂ ∂ ∂⎝ ⎠

∫ ∫L L . 

 
Note that in taking partial derivatives with respect to y  and its derivatives we treat them as 
independent. It is a thumb-rule that enables us to write the variation rather easily by 
inspection and using rules of partial differentiation of ordinary calculus. 
 
We have now laid the necessary mathematical foundation for deriving the Euler-Lagrange 
equations that are the necessary conditions for the extremum of a function. Note that the 
Gâteaux variation still has an arbitrary function h . When we get rid of this, we get the Euler-
Lagrange equations. For that we need to talk about fundamental lemmas of calculus of 
variations. 


