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Outline of the lecture 
 Euler-Lagrange equations 
 Boundary conditions 
 Multiple functions 
 Multiple derivatives 
 What we will learn: 
 First variation + integration by parts + fundamental lemma = Euler-
Lagrange equations 

 How to derive boundary conditions (essential and natural) 
 How to deal with multiple functions and multiple derivatives 
 Generality of Euler-Lagrange equations 
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The simplest functional, F(y,y’) 
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First variation of J w.r.t. y(x). 

The condition given above should hold good for any 
variation of y(x), i.e., for any  
But there is        , which we will get rid of it through 
integration by parts. 
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Integration by parts… 
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We can invoke fundamental lemma of calculus of 
variations now. 
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Fundamental lemma… 
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The two terms are 
equated to zero 
because the first term 
depends on the entire 
function whereas the 
second term only on 
the value of the 
function at the ends. 

The integral should be zero for any 
value of       . So, by fundamental 
lemma (Lecture 10), the integrand 
should be zero at every point in the 
domain. 
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Boundary conditions 
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The algebraic sum of the two terms may 
be zero without the two terms being 
equal to zero individually. We will see 
those cases later. For now, we will take 
the general case of both terms 
individually being equal to zero. 
 
Thus, 
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Euler-Lagrange (EL) equation with 
boundary conditions 
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and 

Problem statement 

Differential equation 

Boundary conditions 
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Example 1: a bar under axial load 
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Axial displacement =  

Principle of minimum potential energy (PE) 

Strain energy Work potential 

= area of 
cross-section 

Among all 
possible axial 
displacement 
functions, the 
one that 
minimizes PE is 
the stable static 
equilibrium 
solution. 
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Bar problem: E-L equation 
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Integrand of the PE 

Governing differential equation 
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Bar problem: boundary conditions 
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δ

δ

′ = = =

′ = =

0 or 0 at 0
and

or 0 at

EAu u x

EAu u x L

This means that y is specified; 
hence, its variation is zero. This 
is called the essential or 
Dirichlet boundary condition. 

This means that the stress is zero 
when the displacement is not 
specified. It is called the natural 
or Neumann boundary 
condition. 

δ = 0u
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Weak form of the governing equation 
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( )δ δ δ δ′ ′= − =∫
0

( ) ( ) ( ) ( ) 0 for any
L

uPE E x A x u x u p x u dx u

( ) ( )δ δ′ ′ =∫ ∫
0 0

( ) ( ) ( ) ( )
L L

E x A x u x u dx p x u dx

Internal virtual work = external virtual work 

First variation is zero. 

δu
Variation of u 
is like virtual 
displacement. 
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Three ways for static equilibrium 
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( )
δ

δ

′′ + =

′ = = =

′ = =

0
0 or 0 at 0

and
or 0 at

EAu p
EAu u x

EAu u x L

Minimum 
potential energy 
principle 

Principle of 
virtual work; 
The weak form 

Force balance; 
And boundary 
conditions. 
The strong form. 

Q: What is “weak” 
about the weak form? 
A: It needs derivative 
of one less order. 
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From Slide 7 in Lecture 3 

So, straight 
line in 
indeed the 
geodesic in 
a plane. 

Example 2: is a straight line really the least-
distance curve in a plane? 
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Example 3: Brachistochrone problem 
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From Slide 11 in Lecture 2 

H 

g 

B 

A Minimize 

L And we have Dirichlet (essential) 
boundary conditions at both the ends. 
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A functional with two derivatives: F(y,y’,y’’) 
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First variation of 
J w.r.t. y(x). 

We now need to integrate by parts twice 
to get rid of the second derivative of y. 
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Integration by parts… twice! 
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δ δ δ δ δ δ δ

δ δ δ δ

       ∂ ∂ ∂ ∂ ∂ ∂′ ′′ ′ ′′= + + = + + =       ′ ′′ ′ ′′∂ ∂ ∂ ∂ ∂ ∂       

    ∂ ∂ ∂ ∂ ∂  ′⇒ + − + −    ′ ′ ′′ ′′∂ ∂ ∂ ∂ ∂     

∫ ∫ ∫ ∫

∫ ∫

2 2 2 2

1 1 1 1

2 22 2

1 11 1

0
x x x x

y
x x x x

x xx x

x xx x

F F F F F FJ y y y dx y dx y dx y dx
y y y y y y

F F d F F d Fy dx y y dx y
y y dx y y dx

δ

δ δ δ

   ′ =  
   

        ∂ ∂ ∂ ∂ ∂ ∂  ′⇒ − + + − + =        ′ ′′ ′ ′′ ′′∂ ∂ ∂ ∂ ∂ ∂         

∫

∫

2

1

2 22

1 11

2

2

0

0

x

x

x xx

x xx

y dx
y

F d F d F F d F Fydx y y
y dx y y y dx y ydx

= 0 gives differential equation by 
using the fundamental lemma. 

Two sets of boundary conditions 
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E-L equation and BCs for F(y,y’,y’’) 
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Things are getting 
lengthy; 
Let us use short-
hand notation. 
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Example 4: beam deformation 
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From Slide 27 in Lecture 3 

When E and I are uniform, we get the familiar:  
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Boundary conditions for the beam 
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( ) δ′′ ′ =
0

0
L

EIw w

Physical interpretation 

Either shear stress 
is zero or the 
transverse 
displacement is 
specified.  

Either bending 
moment is zero or 
the slope is 
specified. 
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Do we see a trend for multiple 
derivatives in the functional? 
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Three derivatives… F(y,y’,y”,y’’’) 
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Many derivatives… F(y,y’,y”,…y(n)) 

Most general 
form with 
one function 
and many 
derivatives 
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What if we have two functions? 
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Now, we need to 
take the first 
variation with 
respect to both the 
functions, 
separately. 
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What if we have two functions? (contd.) 
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And, we will 
have two 
differential 
equations and 
two sets of 
boundary 
conditions. 
Two unknown 
functions need 
two 
differential 
equations and 
two sets of 
BCs. That is all! 

and 

and 
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Most general form:  
m functions with n derivatives. 
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The most 
general form 
when we have 
one 
independent 
variable x. 
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The end note 
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Dealing with multiple derivatives along with boundary conditions 
(need to do integration by parts as many times as the order of the highest 
derivative) 

General form of Euler-Lagrange equations in 
one independent variable 

Euler-Lagrange equations = first variation + integration by parts + 
fundamental lemma 

Boundary conditions 
Essential (Dirichlet) 
Natural (Neumann) 

Dealing with multiple functions (rather easy) 
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