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Outline of the lecture 
 Global and local constraints 
 Dealing with global constraints 
 Euler-Lagrange equations with constraints; Lagrange multipliers 
 Inequality constraints 
 What we will learn: 
 How to identify a constraint as global as local 
 When is Lagrange multiplier a scalar  
 How to write Euler-Lagrange equations and boundary conditions for a 
problem with global constraints 

 Interpreting the Lagrange multipliers and understanding the 
complementarity conditions 
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Global vs. local constraints 
 Global vs. local here pertains to whether a constraint is imposed at each 
point in the domain or it is imposed on a quantity that pertains to the 
entire domain. 
◦ Global constraints pertain to the entire domain. 
◦ Local constraints are imposed at every point in the domain, individually. 

 Mathematically, it tells whether a constraint is a functional or a function. 
◦ Global constraint is a functional 
◦ Local constraint is a function. It can also be a differential equation. 

 It also has implications when we discretize. 
◦ Upon discretization, a global constraint gives rise to only one constraint. 
◦ A local constraint, on the other hand, gives as many constraints as the 

number of discretization points. 
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Examples of global and local constraints 

 Length of a curve 
 Area of a surface 

 Time of travel 
 Weight of a structure 

 Deflection at a particular point 
 Maximum stress 

 Buckling load 
 Natural frequency 
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 Upper or lower bound on a curve 
 Bounds on the deflection of a 

structure 
 Bounds on stress 

 Governing differential equation 
 Bounds on the mode shape 

  

Global constraints Local constraints 

It is important 
to understand 
this difference. 
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Global constraint: isoperimetric problem 

5 

This problem statement 
means that we need to 
find y(x) that minimizes 
J and satisfies the 
equality constraint, K. 

It is a global constraint because K here depends on the entire 
domain. It is a functional. It is a single value. 
A problem with a global constraint is also called isoperimetric 
problem. This is because the perimeter constraint is the historic 
global constraint. 
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How do we solve this? 
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Recall how we handled 
equality constraints in 
finite-variable 
optimization. (Lecture 5) 

You may recall from lecture 5 that… 
We linearized the constraint and used the first-order term to 
eliminate a variable and made the problem unconstrained. 
We also came up with the concept of Lagrange multiplier. 
Here too, we will follow the same idea. 
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Equivalent of first-order term of a 
functional 
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From Eq. (6) in Slide 26 of Lecture 9 

From Eq. (1) in Slide 22 of 
Lecture 9 

Variational derivative, 
which is the expression in 
the Euler-Lagrange 
equation. 
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First-order term of the global constraint 
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The first-order term shows that the constraint has non-zero value 
whenever we perturb the function at a point. So, it won’t satisfy 
the equality constraint anymore. 
So, we will perturb y(x) at two points… 
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Two perturbations of the global constraint 
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We choose xa and xb such that the first-order changes due to the two 
perturbations cancel each other and we retain the feasibility of the 
constraint. 
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One perturbation of the function in 
terms of the other 
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In order to divide like this, 
we require that there should 
be at least one point x where 
the variational derivative is 
not zero. This is the 
equivalent of constraint 
qualification of finite-
variable optimization. See 
Slide 13 of Lecture 5. 
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Perturbation of the objective functional at 
the same two points by the same amounts 
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Eliminating one perturbation… 
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Defining a multiplier… 
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First order change in the objective functional 
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This is zero because 
now it is the first-
order term due to 
one arbitrary 
feasible 
perturbation 
because the other 
one is eliminated. 

0
a ax x x x

J K
y y

δ δ
δ δ= =

+ Λ = because 

0aε σ∆ =and (the second 
order term) 
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Putting things together… 
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From Slide 13… 

From Slide 14… 

Since xa and xb are arbitrary, the 
following should be true for any 
x. And     must be a constant. 
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Lagrangian can now be defined. 

16 

N
ecessary coniditon 

Feasibility coniditon 
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Necessary conditions 

17 

Unknowns 

Function  

Differential equation 

Scalar variable 

Scalar equation 

Equations 
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What if we have an inequality constraint? 
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We introduce complementarity condition and require 
non-negativity of the Lagrange multiplier… 
just as we did in finite-variable optimization; see Slide 
23 in Lecture 5. The same argument applies here too. 
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Example 1: hanging chain problem 
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Necessary conditions for the hanging 
chain problem 
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Example 2: Stiffest beam of given 
volume  
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We now know 
how to deal with 
this global 
constraint 

This is a local 
constraint; we 
discuss this in 
Lecture 14 
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The end note 
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Necessary conditions 
Extension to inequality constraints 

Necessary constraints for global constraints  
in calculus of variations 

Distinguishing between  global and local constraints 

First-order perturbation of a functional using the concept of  
Variational derivative  
Two perturbations to cancel the effects of each other to retain feasibility of 
The equality constraint. 
 
 
Concept of Lagrange multiplier and Lagrangian 
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