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Outline of the lecture 
 First integrals of Euler-Lagrange equations 
 Noether’s integral 
 Parametric form of E-L equations 
 Invariance of E-L equations 
 What we will learn: 
 How to simplify the E-L equations to easy-to-solve differential equations 
in some cases 

 How to take advantage of parametric forms and change of variables 
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More than formulating equations… 
 So far, we have learnt how to get differential equations and boundary conditions using 
the techniques of calculus of variations. 
◦ Indeed it is powerful. 
◦ We have learnt various generalizations: 

◦ Multiple derivatives 
◦ Multiple functions 
◦ Two and three independent variables 
◦ Equality and inequality constraiints 
◦ Variable end conditions 
◦ Broken extremals and corner conditions 

 There are a few concepts that become useful when we also want to solve them using 
analytical (rather than numerical) techniques. 

 We will still not get a solution right away but we get a simpler or easily solvable form 
of differential equations. 

 In some cases, we get some insight into the problem. This is the aim of the content of 
this lecture. 
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Consider the brachistochrone problem 
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From Slide 14 in Lecture 11 

H 

g 

B 

A Minimize 

L And we have Dirichlet (essential) 
boundary conditions at both the ends. 
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Looks formidable to solve… 
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At first sight, this differential equation looks to be too 
complicated to solve analytically… 

And we are far from showing that the solution of this 
is a cycloid. 
First integral of Euler-Lagrange equations provides a 
way out of this. 
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First integrals of special forms 
 Solving differential equations means that we are integrating them. 
◦ This is what we do whether we do it analytically or numerically. 

 So, first integrals imply that we are integrating the differential equation 
to some extent. 

 For Euler-Lagrange equations, some special forms, are amenable for 
writing the first integrals and thereby reduce their degree and hence 
their complexity. 
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Integrand of the form  
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Euler-Lagrange equation has only one term, in this case. 

It is simply an algebraic equation; not a differential 
equation. So, there is nothing to integrate here. 
Notice also that it does not have a boundary condition 
too. 
Recall that the simplest boundary condition term 
involves y’. 
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Integrand of the form  

Euler-Lagrange equation has only one term, in this 
case too. 

We can express y’ in this form and now it can be 
directly integrated either analytically (when it is 
possible to do) or numerically. 

See Slide 13 in Lecture 11 for an example. 
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Integrand of the form 
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Euler-Lagrange equation has two terms. 

Expanded. 

Multiply by y’ through 
out. 

A simple contraction of the terms. 

An elegant first integral. 
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Brachistochrone problem has the form 
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Minimize 

Now, instead of that, 
we get this. 
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Simplification of the Brachistochrone 
differential equation 
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A much simpler form to solve. 
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An insight with the first integral 
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Consider the action integral for the 
dynamics of a spring-mass system: 

Side 33 in Lecture 3 
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This is of the form and hence 
is amenable for the elegant 
first integral. 
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Hamilton’s principle for dynamics. 
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An insight with the first integral: 
conservation of energy 
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Thus, the first integral gave rise to the 
principle of conservation of energy. 
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An integrand of the form 
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Not integrated, but is a simpler form to deal with. 



ME256@IISc: Variational Methods and Structural Optimization G. K. Ananthasuresh, IISc 

Now, try to solve this functional 
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It is of the form: 

Therefore, 

Thus, 2 2

2 2

2 2 2

yy y y C
y y

y C y y

′
′ ′+ − =

′+

′⇒ = + No sight of solution yet! 
(despite using the first integral) 

Let us try change of variables: 
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Change of variables 
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Now, this is a new functional in u and v where we need to find v(u). 
What would be the Euler-Lagrange equations for this? 
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New functional satisfies the old equation! 
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is satisfied by v(u) 
just as y(x) satisfies 0F d F

y dx y
 ∂ ∂

− = ′∂ ∂ 

So, we need to get the new functional in the form shown above, 
when we change variables. 
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An example 
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With 

becomes 

And noting that 

Check the algebra by 
working it out in 
detail. 
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Example (contd.) 
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Thus, 

With or 

Thus, the solution of 
the differential 
equation in slide 15 is  
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A note about change of variables 
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Change of variables is a great way to solve 
an otherwise difficult problem. But nobody 
can tell us which change of variables will 
work for a given problem. You just have to 
know or guess.  
 
But note that calculus of variations lets you 
use change of variables. 
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Parametric form and Euler-Lagrange 
equations 
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Parametric form 

should not depend on t explicitly. 
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A comment 
 We saw that the change of variables and the parametric form 
do not alter the form of Euler-Lagrange equations. 
◦ It is very useful in a number of situations. 
◦ Parametric form is especially useful when y(x) is to denote a closed 

curve.  
◦ It is also useful in dealing with dynamics problems too.  

 There is a more general theorem related to invariance of 
Euler-Lagrange theorem. It is called Noether’s theorem. 
◦ Noether’s theorem is related to the first integrals we discussed earlier 

in this lecture. 
◦ It leads to conserved quantities. 
◦ Proved by a German mathematician Emmy Noether, this theorem was 

praised by Einstein for its penetrating thinking.  
◦ It is used widely in mathematical physics. 
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Noether’s 
theorem next… 



ME256@IISc: Variational Methods and Structural Optimization G. K. Ananthasuresh, IISc 

Invariance under transformations 
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Consider 

we say that the functional is invariant under the 
transformation shown above.  
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Noether’s theorem 
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Consider 

we say that the functional is invariant under the 
transformation shown above. Then, 

A one-parameter 
transformation. 

If 
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Noether’s theorem (case of many functions) 
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we say that the functional is invariant under the 
transformation shown above. Then, 

If 
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An application of Noether’s theorem 
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Consider 
A one-parameter family 
of transformations for the 
rotation of the system of 
particles about the z-axis. 

Suppose that A is invariant under the above transformation. 
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Compare with the generic transformation. 
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Noether’s theorem application (contd.) 
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Conservation of 
angular momentum! 
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Why is Noether’s theorem important? 
 Because it lets us find conserved quantities for any 
calculus of variations problems leading to first 
integrals. 
 It can be extended to multiple functions. 
 It can be extended to multiple derivatives. 
 In mechanics, conservation of energy, conservation of 
linear momentum, and conservation of angular 
momentum, etc., follow from Noether’s theorem. 
 The previous example illustrated it for the 
conservation of angular momentum. 
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The end note 
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Parametric form too does not alter the form of the El equations. 

Invariant transformations and conserved quantities 
using Noether’s theorem 

First integrals for various forms of functionals 

Ways to simplify Euler-Lagrange equations and thereby solve them 
analytically. 

Change of variables does not alter the form of Euler-Lagrange equations. 


	Lecture 16���Integrals and Invariants of �Euler-Lagrange Equations
	Outline of the lecture
	More than formulating equations…
	Consider the brachistochrone problem
	Looks formidable to solve…
	First integrals of special forms
	Integrand of the form 
	Slide Number 8
	Integrand of the form
	Brachistochrone problem has the form
	Simplification of the Brachistochrone differential equation
	An insight with the first integral
	An insight with the first integral: conservation of energy
	An integrand of the form
	Now, try to solve this functional
	Change of variables
	New functional satisfies the old equation!
	An example
	Example (contd.)
	A note about change of variables
	Parametric form and Euler-Lagrange equations
	A comment
	Invariance under transformations
	Noether’s theorem
	Noether’s theorem (case of many functions)
	An application of Noether’s theorem
	Compare with the generic transformation.
	Noether’s theorem application (contd.)
	Why is Noether’s theorem important?
	The end note

