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Outline of the lecture

Some problems in calculus of variations with solutions to odd-
numbered problems.

What we will learn:

How to apply the concepts and ideas learned so far to solve problems in
calculus of variations.




Problem 1

Write Gateaux variation for the following functionals.
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Solution to Problem 1.1

Write Gateaux variation for the following functionals.
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Solution for Problem 1.2

Write Gateaux variation for the following functionals.
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Solutlon to Problem 1.2
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Solution to Problem 1.3

Write Gateaux variation for the following functionals.
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Solution to Problem 1.3 (contd.)
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Problem 2

Write the Gateaux variation of the functional, J=max(f* — f"). where f(x) is defined over an

mterval, [x,.x,], for a particular function, f(x)= Y -x.




Problem 3

Solution over the first one third of the domain for the following problem 1s shown in the figure.
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How would vou proceed to plot the rest of the solution to reach the point (15.10)?
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Solution to Problem 3

Solution over the first one third of the domain for the following problem 1s shown in the figure.
15

Minimize J = I W iwdyx such that w(0)=0 and w(15)=10.
0
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How would vou proceed to plot the rest of the solution to reach the point (15.10)?
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Solution to Problem 3 (contd.)

We can write the first integral when F = w"”w

F-y'F, = C=constant

So, Ww—3www' =C

_owPrw=C This can now be solved analytically to
find w(x). In that case, we do not need the
W = 3/_3 first one-third of the solution. If we want
2W to use, then we can numerically proceed

from x =5 because we know w’ here.

X 0.01 Note that C can be numerically
estimated from the given partial
solution.

Wx=5+0.01 ~
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Problem 4

Write the boundary conditions for the beam shown in the figure

below.
lF

i




Problem 5

Write the boundary conditions for the beam shown in the figure below.

Pin joint with a
torsional spring P Fixed joint




Solution to Problem 5

Let us write the potential energy for the given beam.

PE = SE +WP = j% EIW”de+%KW’2

X=% T (_ F W‘X:O.5 )

It is a problem of variable end conditions because the left and right ends of the beam are
constrained to move along arc of circles. Furthermore, it is a compliant four-bar mechanism.
Therefore, the rotation of the two cranks are also related to each other.

Recall the boundary conditions when the ends are variable and the integrand F contains
the second derivative (see Slide 18 in Lecture 15).
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Solution to Problem 5 (contd.)
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Solution to Problem 5 (contd.)

PE =SE+WP = T% Elw"*dx +%KW'2‘X_X + (—F W‘x:O.S)

{(F + [1*}' (%, )] (¢ =)+ Fo (9" _J’")j 5x}m

x1

(E W+ w4 (—ElW")’ (—5— y'j + ElW"[—i— y”D
2 2 y y .

=0

{(i W™+ cw” —|—(—E|W")’ (— 1 Y'j + ElW"(——l — y”D}
2 2 y+e y+e ,




Problem 6

Write the ditferential equation and the boundary conditions for the beam
shown in the figure below.




Problem 7

Four boundary conditions are obtained when we minimize the potential energy of a
beam under transverse load. Think of a physical arrangement of a beam where two or
more boundary conditions are coupled to one another so that the four boundary
conditions are not all independently zero. Sketch your physical arrangement clearly
and mathematically interpret how the boundary conditions are coupled.




Solution to Problem 7

Four boundary conditions are obtained when we minimize the potential energy of a
beam under transverse load. Think of a physical arrangement of a beam where two or
more boundary conditions are coupled to one another so that the four boundary
conditions are not all independently zero. Sketch your physical arrangement clearly
and mathematically interpret how the boundary conditions are coupled.

L
(Ew") 6w| +(Elw") 5w

0

= () conditions. If each of the four terms
is individually equated to zero, we
get four boundary conditions.

L This is the sum of the four boundary
0

We need to find a physical arrangement where the four terms are not
individually zero. Then, the sum must be zero.

Go to the next slide to see such an arrangement.



Solution to Problem 7 (contd.)
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Here, the transverse displacements and rotations at the two ends are coupled to
one another because of the asymmetric linkage that connects them. We need to
write the strain energy and then take Gateaux variation.



Problem 8

Solve the problem of hanging-chain problem using constrained calculus of variations
problem. The length of the chain is 1 m and the horizontal span between the points
from which it hangs is 0.5 m. The two points are at the same height. The mass per unit
length of the chain is 1 kg/m. Acceleration dues to gravity is 9.81 m/s2. Compute the
Lagrange multiplier and interpet it physically in the context of this problem




Problem 9

Given two points in the xy-plane, namely (x1,y1) and (x2,y2), and a curve given by
f(x,y) = 0 passing through those points, find a second curve of length L passing through
the same two points and enclosing maximum area between this curve and the first
curve. Pose the problem first and the write the differential equation and boundary
conditions. Solve it numerically by taking a particular f(x,y) = 0 and some values for x1,

y1l, x2, and y2.




Solution to Problem 9

Given two points in the xy-plane, namely (x1,y1) and (x2,y2), and a curve given by
f(x,y) = 0 passing through those points, find a second curve of length L passing through
the same two points and enclosing maximum area between this curve and the first
cirve. Pose the problem first and the write the differential equation and boundary
conditions. Solve it numerically by taking a particular f(x,y) = 0 and some values for x1,

yl, x2, and y2.

Given curve ¢( X )

Area to be maximized Curve to be found y(x )




Solution to Problem 9 (contd.)

Min A = _[ ¢ y )dx Area to be maximized (hence negative
y(x) sign for minimization).
Subject to
X2
A j \/ 1+ yrz dx—L=0 Constraint on the length of the curve.
*1
X2
L= j { (¢ y + A\/l + y }dx AL Lagrangian
*1

) Integrand to be used to write
= (¢ —Y ) + A1+ Yy Euler-Lagrange equation and

boundary conditions.



Solution to Problem 9 (contd.)
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Problem 10

Write the necessary conditions, including the boundary conditions,
for the following problem.
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Subject to
i
A j'A(x)dx—V*go
0
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Problem 11

Write the necessary conditions, including the boundary conditions,
for the following problem.

(9:1: (s, 1) dT, y(s,t)\’
Min 1 ’ dtd
x(s,t) tzn ) a ( dt i ot °
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Solution to Problem 11

2
LT AT 2 AT
Min I=“ X+8_x + y+8y dt ds

x(s,t),y(s,t) 00 \ dt 5t dt 8t
Subject to

LT ( 2 2 \
A ”L X W _1lgsdr=0

o 1 0s 0s

Data: L, T,T (t), Ty(t), x(s,0),y(s,0),x(0,t) =y(0,t) =0

Notice that we have included time-integration in the constraint equation without
atfecting it. This is just for convenience so that we can write the integrand together for the
objective function and constraint.
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Solution to Problem 11 (contd.)

Begin with the Lagrangian.
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Solution to Problem 11 (contd.)
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Solution to Problem 11 (contd.)
F= \/T v ) 4 (T, +y,) + {\/x i —1}
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Problem 12

Write the necessary conditions, including the boundary conditions,
for the following problem.

T(L_x)l -
seamssrs
Minimize -
B(x) aEA
Subject to
&
M
A A= ;:” e <0
o

i
A,: [ebdc—7,, <0
0

Data. a=r/12,t,A, E=E/(-v)’, LV ,M,(x),m (x)



The end note

Practice problems in calculus of variations

Problems in taking Gateaux variation

Writing the Euler-Lagrange equations for unconstrained and constrained
problems

Boundary conditions for beams to apply the concepts related to coupled
boundary conditions, variable end conditions, and corner conditions.

Formulating calculus of variations.

Writing the necessary conditions for calculus of variations
problem with constraints.
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