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Outline of the lecture 
 Some problems in calculus of variations with solutions to odd-
numbered problems. 

 What we will learn: 
 How to apply the concepts and ideas learned so far to solve problems in 
calculus of variations. 
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Problem 1 

3 

Write Gâteaux variation for the following functionals. 
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Solution to Problem 1.1 
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Write Gâteaux variation for the following functionals. 
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Solution for Problem 1.2 
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Write Gâteaux variation for the following functionals. 
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Solution to Problem 1.2 
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Solution to Problem 1.3 
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Write Gâteaux variation for the following functionals. 
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Solution to Problem 1.3 (contd.) 
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Problem 2 
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Problem 3 
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Solution to Problem 3 
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Solution to Problem 3 (contd.) 
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3F w w′=We can write the first integral when  
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3
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3
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w w w ww C
w w C

Cw
w

′ ′ ′− =

′⇒ − =
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This can now be solved analytically to 
find w(x). In that case, we do not need the 
first one-third of the solution. If we want 
to use, then we can numerically proceed 
from x = 5  because we know w’ here. 

So, 

5 0.01 5 5
0.01x x x

w w w= + = =
′≈ + × Note that C can be numerically 

estimated from the given partial 
solution. 
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Problem 4 
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Write the boundary conditions for the beam shown in the figure 
below. 
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Problem 5 

14 

Write the boundary conditions for the beam shown in the figure below. 
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Solution to Problem 5 
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Let us write the potential energy for the given beam. 
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It is a problem of variable end conditions because the left and right ends of the beam are 
constrained to move along arc of circles. Furthermore, it is a compliant four-bar mechanism. 
Therefore, the rotation of the two cranks are also related to each other. 

Recall the boundary conditions when the ends are variable and the integrand F contains 
the second derivative (see Slide 18 in Lecture 15). 
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Solution to Problem 5 (contd.) 

16 

1( )xφ 2 ( )xφ

2 2 2
1 1

1

( , )
2 2 0
x y x y r

x x y y
xy x x
y

φ
δ δ

δ δ φ δ

= + =
⇒ + =

′⇒ = − =

( ) ( )
( ) ( )

2 2 2
2 2

2

( , )

2 2 0

x y x f y e r

x f x y e y
x fy x x
y e

φ

δ δ

δ δ φ δ

= − + + =

⇒ − + + =

− ′⇒ = − =
+

f



ME256@IISc: Variational Methods and Structural Optimization G. K. Ananthasuresh, IISc 

Solution to Problem 5 (contd.) 
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Problem 6 
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Write the differential equation and the boundary conditions for the beam 
shown in the figure below. 
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Problem 7 
 Four boundary conditions are obtained when we minimize the potential energy of a 
beam under transverse load. Think of a physical arrangement of a beam where two or 
more boundary conditions are coupled to one another so that the four boundary 
conditions are not all independently zero. Sketch your physical arrangement clearly 
and mathematically interpret how the boundary conditions are coupled.  

19 
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Solution to Problem 7 
 Four boundary conditions are obtained when we minimize the potential energy of a 
beam under transverse load. Think of a physical arrangement of a beam where two or 
more boundary conditions are coupled to one another so that the four boundary 
conditions are not all independently zero. Sketch your physical arrangement clearly 
and mathematically interpret how the boundary conditions are coupled.  

20 

( ) ( )δ δ′′′ ′′ ′+ =
0

0

0
L

L
EIw w EIw w

This is the sum of the four boundary 
conditions. If each of the four terms 
is individually equated to zero, we 
get four boundary conditions. 

We need to find a physical arrangement where the four terms are not 
individually zero. Then, the sum must be zero. 

Go to the next slide to see such an arrangement. 
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Solution to Problem 7 (contd.) 
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L

Here, the transverse displacements and rotations at the two ends are coupled to 
one another because of the asymmetric linkage that connects them. We need to 
write the strain energy and then take Gâteaux variation. 
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Problem 8 
 Solve the problem of hanging-chain problem using constrained calculus of variations 
problem. The length of the chain is 1 m and the horizontal span between the points 
from which it hangs is 0.5 m. The two points are at the same height. The mass per unit 
length of the chain is 1 kg/m. Acceleration dues to gravity is 9.81 m/s2. Compute the 
Lagrange multiplier and interpet it physically in the context of this problem 

22 
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Problem 9 
 Given two points in the xy-plane, namely (x1,y1) and (x2,y2), and a curve given by 
f(x,y) = 0 passing through those points, find a second curve of length L passing through 
the same two points and enclosing maximum area between this curve and the first 
curve. Pose the problem first and the write the differential equation and boundary 
conditions. Solve it numerically by taking a particular f(x,y) = 0 and some values for x1, 
y1, x2, and y2.  

23 
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Solution to Problem 9 
 Given two points in the xy-plane, namely (x1,y1) and (x2,y2), and a curve given by 
f(x,y) = 0 passing through those points, find a second curve of length L passing through 
the same two points and enclosing maximum area between this curve and the first 
cirve. Pose the problem first and the write the differential equation and boundary 
conditions. Solve it numerically by taking a particular f(x,y) = 0 and some values for x1, 
y1, x2, and y2.  

24 
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Given curve 

Curve to be found Area to be maximized 
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Solution to Problem 9 (contd.) 
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Area to be maximized (hence negative 
sign for minimization). 

Constraint on the length of the curve. 

( ){ }φ ′= − − + Λ + −Λ∫
2

1

21
x

x

L y y dx L

( )φ ′= − − + Λ + 21F y y

Lagrangian 

Integrand to be used to write 
Euler-Lagrange equation and  
boundary conditions. 
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Solution to Problem 9 (contd.) 
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( )φ ′= − + Λ + 21F y y

 ′Λ ⇒ − − =
 ′+ 

2
1 0

1

yd
dx y

This shows that the curvature is constant for y(x). 
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Problem 10 

27 

Write the necessary conditions, including the boundary conditions, 
for the following problem. 
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Problem 11 

28 

Write the necessary conditions, including the boundary conditions, 
for the following problem. 
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Solution to Problem 11 
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Notice that we have included time-integration in the constraint equation without 
affecting it. This is just for convenience so that we can write the integrand together for the 
objective function and constraint. 
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Solution to Problem 11 (contd.) 
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Euler-Lagrange equations Boundary conditions 
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Solution to Problem 11 (contd.) 
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Similarly, for y(s,t) too. 
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Solution to Problem 11 (contd.) 
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Similarly, for y(s,t) too. 
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Problem 12 
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Write the necessary conditions, including the boundary conditions, 
for the following problem. 



ME256@IISc: Variational Methods and Structural Optimization G. K. Ananthasuresh, IISc 

The end note 

34 
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Formulating calculus of variations. 

Problems in taking Gâteaux variation 

Writing the Euler-Lagrange equations for unconstrained and constrained 
problems 

Boundary conditions for beams to apply the concepts related to coupled 
boundary conditions, variable end conditions, and corner conditions. 

Writing the necessary conditions for calculus of variations 
problem with constraints. 
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