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Outline of the lecture 
 Solve Problem 1 analytically. 
 Solve Problem 2 numerically. 
 What we will learn: 
 General procedure to write necessary conditions for a structural 
optimization problem. 

 Interpreting the optimality criterion. 
 Numerical solution of a structural optimization problem using the 
optimality criteria method. 

  

2 



ME256@IISc: Variational Methods and Structural Optimization G. K. Ananthasuresh, IISc 

General structure of a structural 
optimization problem 
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( )

( )
0

*

0
*

( ) : 0

: 0

: , ( ), ,

L

A x

L

Min MC pu dx

Subject to

x EAu p

Adx V

Data L p x E V

λ

=

′′ + =

Λ − ≤

∫

∫

Optimize Objective function 

Subject to 
Governing equation(s) 

Resource constraint(s) 
Performance constraints 

Data 

(It depends on design variables 
and state variables.) 

w.r.t. design 
variables 

(They govern state variables.) 

They create conflict in 
optimizing the objective 
function. 

A simple problem 

(This should be properly chosen although the 
nature of the solution is not decided by the 
data.) 



ME256@IISc: Variational Methods and Structural Optimization G. K. Ananthasuresh, IISc 

Steps in the solution procedure 
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 Step 1: Write the Lagrangian 
 Step 2: Take variation of the Lagrangian w.r.t. the design variable and 
equate to zero to get the design equation. 

 Step 3: Take variation of the Lagrangian w.r.t. state variable(s) and 
equate to zero to get the adjoint equation. 

 Step 4: Collect all the equations, including the governing equation(s), 
complementarity condition(s), resource constraints, etc. 

 Step 5: Obtain the optimality criterion by substituting adjoint and 
equilibrium equations into the design equation, when it is possible. 

 Step 6: Identify all boundary conditions. 
 Step 7: Solve the equations analytically as much as possible. 
 Step 8: Use the optimality criteria method to solve the equations 
numerically. 
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Consider Problem 1 to solve. 
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Subject to
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=
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∫
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Step 1 to solve Problem 1 
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 Step 1: Write the Lagrangian 
 

( )

( )
0

*

0
*

( ) : 0

: 0

: , ( ), ,

L

A x

L

Min MC pu dx

Subject to

x EAu p

Adx V

Data L p x E V

λ

=

′′ + =

Λ − ≤

∫

∫

( ){ } *

0 0 0

L L L

L pu dx EAu p dx Adx Vλ
 ′′= + + + Λ −  
 

∫ ∫ ∫

( ){ }L̂ pu EAu p Aλ ′′= + + + Λ

Lagrangian 

Integrand in the Lagrangian functional 
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Step 2 to solve Problem 1 
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 Step 2: Take variation of the Lagrangian w.r.t. the design variable and 
equate to zero to get the design equation. 

 
( ){ }L̂ pu EAu p A pu E A u E Au Aλ λ λ′′ ′ ′ ′′= + + + Λ = + + + Λ

ˆ ˆ
0 0A

L LL
A A

δ
′ ∂ ∂

= ⇒ − =  ′∂ ∂ 

( ) 0
0

E u E u
E u

λ λ
λ

′′′ ′⇒ + Λ − =

′ ′⇒ Λ − =

{ } { } 0E uλ′ ′Λ + − =
Design equation 

Sensitivity 
(derivative) of the 
objective function 

What multiplies 
the Lagrange 
multiplier is the 
sensitivity of the 
corresponding 
constraint. Here, 
it is unity. 
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Step 3 to solve Problem 1  

8 

Step 3: Take variation of the Lagrangian w.r.t. state variable(s) and equate 
to zero to get the adjoint equation. 

( ){ }L̂ pu EAu p A pu E A u E Au Aλ λ λ′′ ′ ′ ′′= + + + Λ = + + + Λ

ˆ ˆ ˆ
0 0u

L L LL
u u u

δ
′   ∂ ∂ ∂

= ⇒ − + =      ′ ′′∂ ∂ ∂   

( ) ( )

( )

0

0

p E A E A

p EA

λ λ

λ

′ ′′′⇒ − + =

′′⇒ + =

( ) 0p EAλ ′′+ =
Adjoint (equilibrium) equation 

Adjoint load; 
here it is equal to 
the actual load 
because the 
objective function 
is mean 
compliance. 

This has the same 
form as the 
governing 
differential 
equation. 
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Step 4 to solve Problem 1 
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 Step 4: Collect all the equations, including the governing equation(s), 
complementarity condition(s), resource constraints, etc. 

 { } { } 0E uλ′ ′Λ + − =

( ) 0p EAλ ′′+ =

( ) 0p EAu ′′+ =

*

0

*

0

0, 0

0

L

L

Adx V

Adx V

 
Λ − = Λ ≥  
 

− ≤

∫

∫

Design equation 

Adjoint (equilibrium) equation 

Equilibrium (governing) equation 

Complementarity conditions 

Feasibility condition 
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Step 5 to solve Problem 1 

10 

 Step 5: Obtain the optimality criterion by substituting adjoint and 
equilibrium equations into the design equation, when it is possible. 

  { } { } 0E uλ′ ′Λ + − =

( ) 0p EAu ′′+ =

*

0

*

0

0, 0

0

L

L

Adx V

Adx V

 
Λ − = Λ ≥  
 

− ≤

∫

∫

( ) 0p EAλ ′′+ =
uλ =

2 0Eu′Λ − =
Strain energy density is uniform along 
the bar. 

Optimality criterion 

u
E
Λ′ = ±
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Step 6 to solve Problem 1 
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 Step 6: Identify all boundary conditions. 
 

( ){ }L̂ pu EAu p A pu E A u E Au Aλ λ λ′′ ′ ′ ′′= + + + Λ = + + + Λ

( ) 0
0

ˆ
0 0

L
LL A E u A

A
δ λ δ

 ∂ ′= ⇒ =  ′∂ 

( ) ( ){ } ( ) 0
0

0

ˆ ˆ
0 0 0

L
L

LL L u E A E A u EA u
u u

δ λ λ δ λ δ
 ′ ∂ ∂  ′′ ′− = ⇒ − = ⇒ =   ′ ′′∂ ∂   

( ) 0
0

ˆ
0 0

L
LL u EA u

u
δ λ δ

 ∂ ′ ′= ⇒ =  ′′∂ 

BC1 

BC2 

BC3 
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Step 7 to solve Problem 1 
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 Step 7: Solve the equations analytically as much as possible. 
 

( ) 0p EAu ′′+ = *

0

0
L

Adx V− =∫

2 0Eu u
E
Λ′ ′Λ − = ⇒ = ±

So, 

0p EA
E
Λ′± = ⇒ cannot be zero. Λ

10 ( ) ( )p EA A x p x C
E E
Λ′± = ⇒ = +

Λ ∫

*

0

0
L

Adx V− =∫Solve for      using Λ

Note that the 
design equation 
helped us solve 
for A(x) even 
though it did not 
have A in it 
explicitly. 

The sign can be 
chosen based on the 
boundary condition 
of the bar, as in 
fixed free, free-
fixed, fixed-fixed. 
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Step 7 to solve Problem 1 (contd.) 
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 Step 7: Solve the equations analytically as much as possible. 
 

01( ) ( ) p xA x p x C C
E E

= − + = − +
Λ Λ∫

As an example, take a fixed-free bar and  
Positive sign is 
chosen here 
because in a fixed-
free bar, strain is 
positive when the 
load is positive. 

0( )p x p= (a constant) 

u
E
Λ′ =

Let us observed the boundary conditions. 

( ) 0
0

LE u Aλ δ′ =

( ) 0
0

LEA uλ δ′ =

( ) 0
0

LEA uλ δ ′ =

For a fixed-free bar, we have: 

Since uλ = ( ) 0
0

LEAu uδ′ =

( ) 0
0

LEAu uδ ′ =

( ) 0
0

LEuu Aδ′ =

0 00 0u uδ= ⇒ = 0Lu′ =and 

All are satisfied by 
virtue of these, 
except 

( ) 0 0
L LEAu u Aδ ′ = ⇒ =

BC1 

BC2 

BC3 
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Step 7 to solve Problem 1 (contd.) 
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 Step 7: Solve the equations analytically as much as possible. 
 

0 0( ) p x p LA x C C
E E

= − + ⇒ =
Λ Λ

Since  0LA =

*

0

0
L

Adx V− =∫Now, let us solve for  Λ using 

* *0

0 0
* *

0
2

0

( )0

2

( )

L L

L

p L xAdx V dx V
E

p V V
LE

L x dx

−
− = ⇒ =

Λ

⇒ = =
Λ

−

∫ ∫

∫

0 ( )( ) p L xA x
E
−

=
Λ

Thus, 

*

2
2 ( )( ) V L xA x

L
−

=Thus, 

Note that optimal area of cross-section of a fixed-free 
bar under uniform loading depends neither on the 
value of the load nor the material property, E. 
This is true in general too! 

Fixed Free 
*2(0) VA

L
= ( ) 0A L =
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Step 8 to solve Problem 1 
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 Step 8: Use the optimality criteria method to solve the equations 
numerically. 

 ( )2
1( ) ( )k k k

A x A x Eu+ ′= + Λ −
2

1( ) ( )k k
k

EuA x A x+

 ′
=  Λ 

or 
Set up the update scheme as: 

2

1( ) ( )k k

k

EuA x A x
β

+

  ′ =   Λ   
β is the tuning parameter in 

the numerical algorithm. 

This scheme is preferred. 

Choose 

k is the iteration counter. 

0 ( )A x as the initial guess. 

Evaluate  *

0

0
L

Adx V− =∫using Λ

Update  1( )kA x+ until convergence, i.e., until  1( ) ( )k kA x A x+ − ≤ tolerance. 

This is called the fixed-point method. 

More on it when we solve Problem 8. 
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Note the steps once more. 
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 Step 1: Write the Lagrangian 
 Step 2: Take variation of the Lagrangian w.r.t. the design variable and 
equate to zero to get the design equation. 

 Step 3: Take variation of the Lagrangian w.r.t. state variable(s) and 
equate to zero to get the adjoint equation. 

 Step 4: Collect all the equations, including the governing equation(s), 
complementarity condition(s), resource constraints, etc. 

 Step 5: Obtain the optimality criterion by substituting adjoint and 
equilibrium equations into the design equation, when it is possible. 

 Step 6: Identify all boundary conditions. 
 Step 7: Solve the equations analytically as much as possible. 
 Step 8: Use the optimality criteria method to solve the equations 
numerically. 
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Let us consider Problem 8 now. 
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( )

( )
0

*

0

*

( ) : 0

: 0

( ) : 0
( ) : 0

: , ( ), , , ,

L

A x

L

u u

l l

l u

Min MC pu dx

Subject to

x EAu p

Adx V

x A A
x A A

Data L p x E V A A

λ

µ
µ

=

′′ + =

Λ − ≤

− ≤

− ≤

∫

∫
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Step 1 to solve Problem 8 
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 Step 1: Write the Lagrangian 
 

( ){ }
( ) ( )

*

0 0 0

0 0

L L L

L L

u u l l

L pu dx EAu p dx Adx V

A A dx A A dx

λ

µ µ

 ′′= + + + Λ −  
 

+ − + −

∫ ∫ ∫

∫ ∫

( ){ } ( ) ( )ˆ
u u l lL pu EAu p A A A A Aλ µ µ′′= + + + Λ + − + −

Lagrangian 

Integrand in the Lagrangian functional 

( )

( )
0

*

0

*

( ) : 0

: 0

( ) : 0
( ) : 0

: , ( ), , , ,

L

A x

L

u u

l l

l u

Min MC pu dx

Subject to

x EAu p

Adx V

x A A
x A A

Data L p x E V A A

λ

µ
µ

=

′′ + =

Λ − ≤

− ≤

− ≤

∫

∫
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Step 2 to solve Problem 8 
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 Step 2: Take variation of the Lagrangian w.r.t. the design variable and 
equate to zero to get the design equation. 

 ( ){ } ( ) ( )

( ) ( )

ˆ
u u l l

u u l l

L pu EAu p A A A A A

pu E A u E Au A A A A A

λ µ µ

λ λ µ µ

′′= + + + Λ + − + −

′ ′ ′′= + + + Λ + − + −

ˆ ˆ
0 0A

L LL
A A

δ
′ ∂ ∂

= ⇒ − =  ′∂ ∂ 

( ) 0
0

u l

u l

E u E u
E u

λ µ µ λ
µ µ λ

′′′ ′⇒ + Λ + − − =

′ ′⇒ Λ + − − =

{ } { } { } { } 0u l E uµ µ λ′ ′Λ + − + − =
Design equation 

Sensitivity 
(derivative) of the 
objective function 

What multiplies the 
Lagrange multiplier 
is the sensitivity of 
the corresponding 
constraint. Here, it is 
positive or negative 
unity for all three. 
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Step 3 to solve Problem 8  

20 

Step 3: Take variation of the Lagrangian w.r.t. state variable(s) and equate 
to zero to get the adjoint equation. 

ˆ ˆ ˆ
0 0u

L L LL
u u u

δ
′   ∂ ∂ ∂

= ⇒ − + =      ′ ′′∂ ∂ ∂   

( ) ( )

( )

0

0

p E A E A

p EA

λ λ

λ

′ ′′′⇒ − + =

′′⇒ + =

( ) 0p EAλ ′′+ =
Adjoint (equilibrium) equation 

Adjoint load; 
here it is equal to 
the actual load 
because the 
objective function 
is mean 
compliance. 

No change here 
as compared to 
Problem 1. 

( ) ( )ˆ
u u l lL pu E A u E Au A A A A Aλ λ µ µ′ ′ ′′= + + + Λ + − + −
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Step 4 to solve Problem 8 
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 Step 4: Collect all the equations, including the governing equation(s), 
complementarity condition(s), resource constraints, etc. 

 

( ) 0p EAλ ′′+ =

( ) 0p EAu ′′+ =

( ) ( )

( )

*

0

*

0

0, 0; 0, 0; 0, 0;

0; 0; 0

L

u u u l l l

L

u l

Adx V A A A A

Adx V A A A A

µ µ µ µ
 

Λ − = Λ ≥ − = ≥ − = ≥  
 

− ≤ − ≤ − ≤

∫

∫

Design equation 

Adjoint (equilibrium) equation 

Equilibrium (governing) equation 

Complementarity conditions 

Feasibility conditions 

0u l E uµ µ λ′ ′Λ + − − =
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Step 5 to solve Problem 8 
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 Step 5: Obtain the optimality criterion by substituting adjoint and 
equilibrium equations into the design equation, when it is possible. 

  

( ) 0p EAu ′′+ =

( ) 0p EAλ ′′+ =
uλ =

2 0u l Euµ µ ′Λ + − − =

These are functions of x; so, the strain 
energy density is not necessarily 
constant throughout. 

Optimality criterion 0u l E uµ µ λ′ ′Λ + − − =



ME256@IISc: Variational Methods and Structural Optimization G. K. Ananthasuresh, IISc 

Step 6 to solve Problem 8 
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 Step 6: Identify all boundary conditions. 
 

( )
0

0

ˆ
0 0

L
L

u l
L A E u A
A

δ λ µ µ δ
 ∂ ′= ⇒ + − =  ′∂ 

( ) ( ){ } ( ) 0
0

0

ˆ ˆ
0 0 0

L
L

LL L u E A E A u EA u
u u

δ λ λ δ λ δ
 ′ ∂ ∂  ′′ ′− = ⇒ − = ⇒ =   ′ ′′∂ ∂   

( ) 0
0

ˆ
0 0

L
LL u EA u

u
δ λ δ

 ∂ ′ ′= ⇒ =  ′′∂ 

BC1 

BC2 

BC3 

( ) ( )ˆ
u u l lL pu E A u E Au A A A A Aλ λ µ µ′ ′ ′′= + + + Λ + − + −
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Step 7 to solve Problem 8 
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 Step 7: Solve the equations analytically as much as possible. 
 

We have three cases now. 

2 0u l Euµ µ ′Λ + − − =
Optimality criterion 

0, 0u l uA Aµ µ> = ⇒ =

0, 0l u lA Aµ µ> = ⇒ =

0, 0l uµ µ= = ⇒

Case 1: 

Case 2: 

Case 3: We have dealt with this in Problem 1. 

Area of cross-section is thus known. 

Area of cross-section is thus known. 

We need to partition the domain (0,L) into these three cases. We do this numerically 
using the optimality criteria method. 
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Partitioning the domain into three types 

25 

uA A= lA A= lA A=uA A=
2

1( ) ( )k k

k

EuA x A x
β

+

  ′ =   Λ   

This is how we update when A(x) 
is in between the bounds. 

While we partition the domain, we should ensure that the volume 
constraint is satisfied. 

As per the optimality criterion 

0x = x L=

uµ lµ

Notice how Lagrange multipliers of the area-bound constraints vary. 
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Calculate the Lagrange multiplier 
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2

1( ) ( )k k

k

EuA x A x
β

+

  ′ =   Λ   

*

0

0
L

Adx V− =∫Substitute  into 

2
* *( )

u ul l

l

k

lu kuA dx A dxEuAdx V A x dxx VA d A dx
β

Ω Ω ΩΩΩ Ω

  ′ + = ⇒ + =  Λ  
+ +

 
∫ ∫∫ ∫∫ ∫

uA A= lA A= lA A=uA A=
0x = x L=

2
*( )

u l

k lu

k

Eu A x d V dx A x A dx
β

Ω ΩΩ

  ′ ⇒ = −  Λ  
−


∫∫ ∫

( ){ }2

*

( )

lu

k
k

u l

Eu A x dx

V x A dxA d

β

Ω

Ω

Ω

′

⇒ Λ =

− −∫

∫

∫



ME256@IISc: Variational Methods and Structural Optimization G. K. Ananthasuresh, IISc 

Step 8 to solve Problem 8 
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 Step 8: Use the optimality criteria method to solve the equations 
numerically. 

 

(i) Choose 0 ( )A x as the initial guess. 

This is the step-wise procedure of the optimality criteria method. 

2

1( ) ( )k k

k

EuA x A x
β

+

  ′ =   Λ   

(iii) Evaluate  *

0

0
L

Adx V− =∫using Λ

(v) Update  1( )kA x+ until convergence, i.e., until  1( ) ( )k kA x A x+ − ≤

(ii)  

(iv) Ensure that everywhere   

tolerance. 

;u lA A A A≤ ≤

This to is iterative; we call it the inner 
iterative loop. This is where we partition 
the domain into three types. 
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Outer and inner loop iterations 

28 

Begin the outer loop with  0 ( )A x

Compute 

( )kA x( ){ }2

*

( )k
k

Eu A x dx

V

β

Ω

′

Λ =
∫

2

1( ) ( )k k

k

EuA x A x
β

+

  ′ =   Λ   
Update 

Check against bounds: 1 1( ) , ( )k u k uIf A x A A x A+ +> = Add that x to  uΩ

1 1( ) , ( )k l k lIf A x A A x A+ +< = Add that x to  lΩ

Now, recalculate  Λ As show in the next slide. 

Inner loop begins here. 
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Inner loop (contd.) 
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( ){ }2

*

( )

u l

u l

k
k

Eu A x dx

V x dxA Ad

β

Ω

Ω Ω

′

Λ =

− −∫

∫

∫

2

1( ) ( )k k

k

EuA x A x
β

+

  ′ =   Λ   
Update again 

Check against bounds 
again 

1 1( ) , ( )k u k uIf A x A A x A+ +> = update 

1 1( ) , ( )k l k lIf A x A A x A+ +< = update 

Now, recalculate  

uΩ

lΩ

Λ

Repeat this until partitioning does not change. 
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Updating Lambda and 
partitioning of the domain  is the 
inner loop. 
Note that area of cross-section 
gets update in the inner loop 
also. 
This ends when partitioning does 
not change anymore. 

Updating area of cross-section is the 
outer loop using the optimality 
criterion. 

The outer loop ends when the design 
variable over the entire domain does 
not change anymore. 
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BarOpt has four files: 
baropt.m >> implements optimality criteria method. 
fembar.m >> finite element code for bar elements. 
matcut.m and veccut.m >> These are used by fembar.m 
baropt.m may be modified by you to change the data such 
as the length of the bar, loading, displacement boundary 
conditions, the number of elements in the bar, total 
number of iterations, the tolerance to stop the iterative 
process, etc. 

A representative result of 
optimized area of cross-
section. 
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Thanks 

Tw
o 

si
m

pl
e 

am
d 

ill
us

tr
at

iv
e 

st
ru

ct
ur

al
 

op
tim

iz
at

io
n 

pr
ob

le
m

s p
er

ta
in

in
g 

to
 a

 b
ar

. 

Problem 8 is solved numerically; Matlab script provided 
separately. 

Axially deforming bar is the simplest structural optimization problem. 

We considered two cases of this. 
The first is general but it illustrates how optimality criterion comes about. 
The second considers restrictions on the design variable, which results in 
the optimality criterion not being satisfied everywhere. 
 

Optimality criteria method and its algorithm were discussed. 

Problem 1 was solved completely analytically. 
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