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It is a small de tour 
but it is important 
to understand this 
before we move to 
calculus of 
variations. 
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Outline of the lecture 
 Necessary conditions for unconstrained optimization problem  
◦ In one variable 
◦ In two variables 
◦ In multiple variables 

 What we will learn: 
 The concept of a local minimum 
 The premise for writing the necessary condition 
 The concept of gradient of a function of n variables 
 And, of course, the necessary conditions of unconstrained optimization 
problem 
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Global and local minima: definitions 

  is  global minimizer of           if                             in the feasible interval of     .  
 

*( ) ( )  f x f x x≤ ∀ x*x ( )f x

These are just definitions; not conditions. 
Definitions of this sort do not let you check if a given value of x is a 
minimum or not unless you exhaustively check the entire domain of x. 
A condition would let you check this easily. 

Global minimum 

Local minimum 
 

,  *with 0x x S x x δ δ  
 
  

∈ − < >

*x *( ) ( )f x f x≤( )f x *x
x

is a local minimizer of if in a small neighborhood of 
in the feasible interval of    . 

N = small neighborhood = 

Simple case: f(x), a function of a single variable, x. 
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Conditions for a local minimum of f(x) 

Necessary 
condition 

Why is the necessary condition not sufficient? 
 
Is the sufficient condition also necessary? 
 
Think about the literal meaning of “necessary” and “sufficient”. 

*
0

x

df
dx =

2

2
*

0
x

d f
dx >

Local 
max 

Local 
min 

Saddle 
point f(x) 

x 

Global min 

 If x* is a local minimum of f(x), then… 

Sufficient 
condition *

0
x

df
dx = & 
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Why is necessary condition “necessary”? 

( ) ( )1
2

2 2*
2

*

*(( ) (3)) *
*

df x x
d

d f x x
dx x

f xx
x

f
x

O= + + +−−

Consider Taylor series expansion of f(x) around x*. 

Zeroth 
order 
term 

First 
order 
term 

Second 
order 
term 

Higher 
order 
terms 

*x *( ) ( )f x f x≤( )f x *x
x

is a local minimizer of if in a small neighborhood of 
in the feasible interval of    . 

Here the small neighborhood is       . When it is small, it is the first order term that matters 
more than the second order term. 
Unless           is zero, we cannot be sure that the definition is satisfied. More in the next slide. 

Perturbation 
around x* 
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Why is necessary condition necessary? (contd.) 

For small  (as small as you can imagine…) 

Negligible May be positive 
or negative 
depending on the 
sign of f(x*) as      
can be positive or 
negative. 

*( ) ( )f x f x≤So, for it is necessary to have    
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Why is necessary condition not sufficient? 

Note that we only talk about the function “not being less 
in the small neighborhood of the minimizing point” to 
say that it has a local minimum. 
So, the condition is that the first order term is zero for any 
small perturbation. This necessitates the first order 
derivative to be zero. 
This condition is necessary, as noted in the previous slide. 
But… 
The necessary condition is true for a local minimum and a 
local maximum. So, it is not sufficient to conclude that a 
given value of x is a local minimum.  
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Is sufficient condition also necessary? 
4

' 3 *

'' 2

''' *

( )
( ) 4    0
( ) 12 0
( ) 24   = 0   0
( ) 24 0iv

f x x
f x x x
f x x
f x x x
f x

=

= ⇒ =

= =

= ⇒ =

= >

But x* = 0, is a minimizer here! So, 
sufficient condition is not 
necessary. 

*
0

x

df
dx =

Necessary 
condition 
is satisfied. 

Sufficient 
condition is not 
satisfied. 

Consider… 
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Understand “necessary” and “sufficient” well. 
 The logic of necessary and sufficient conditions should be clearly 
understood. 

 They actually mean what they say but it can be confusing and 
misleading sometimes. 

 What is necessary may not be sufficient. 
 What is sufficient may not be necessary. 
 Sometimes, a condition can be necessary and sufficient. 
 Note all of this we are saying only in the context of a local minimum. 
 For a global minimum, there is no “operationally useful” definition or 
condition. 

 Let us move to a function of more than one variable next… 
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A function of two variables… 
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Taylor series expansion of f(x,y) around (x*,y*): 
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Two-variable function (contd.) 
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where and 

Gradient Hessian 
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Necessary conditions for the minimum of f(x,y) 

Second order term is negligible and the first 
order term should be zero for small 
So,  

This has two scalar equations in it. 

Two variables (x*,y*) to be 
found using two scalar 
equations! 
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Sufficient condition for the minimum of f(x,y) 

{ } ( )
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A matrix that has this property is said to be positive definite. 
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Positive definite, and other definite things… 
( )
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 ∆ 

H

H

H

H

H

Positive definite H; minimum. 

Positive semi-definite H; minimum 
or flat. 

Negative definite H; maximum. 

Negative semi-definite H; maximum 
or flat. 

Null-definite H; just flat; neither 
minimum nor maximum. 
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Peaks, valleys, folds, ridges, and flat planes… 

Positive definite H; minimum; Bottom of a valley 

Positive semi-definite H; minimum or flat; A valley fold  

Negative definite H; maximum; Peak of a hill  

Negative semi-definite H; maximum or flat; A ridge  

Null-definite H; neither minimum nor maximum; Just flat  

The surface represented by f(x,y) locally looks like this at (x*,y*). 
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Indefiniteness of a matrix 

{ } ( )
*

* * * * * *
*

1 ( , ) ? 0 for any ,
2

x
x y x y x y

y

>
 ∆

∆ ∆ ∆ ∆ 
∆ <

H

It is positive sometimes and negative sometimes… it 
is indefinite. Then, (x*,y*) is a saddle point. 

http://explore.org/photos/2238/horse-saddle 

http://www.pringl
es.com/products 

Minimum one way 
and maximum the 
other way! 
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Function of n variables 
Taylor’s series expansion… 

17 



Variational Methods and Structural Optimization ME256 / G. K. Ananthasuresh, IISc 

Gradient of an n-variable function 

Necessary 
condition: 
n variables; 
n equations. 
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Hessian of an n-variable function 

Sufficient 
condition: 
H should be 
positive 
definite for a 
minimum of 
f(x) 
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Rules of checking positive definiteness 

H is 
positive 
definite  

All Eigen- 
values are 
positive 

All principal 
minors are 

positive 

Pivots are positive in 
the row-echelon form 
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For other “definitenesses”… 

Quadratic form   
Eigen values of  

 
Nature of  

Positive Positive 
definite 

All are positive  Local min 

Negative Negative 
definite 

All are negative Local max 

Non-negative Positive semi-
definite 

Some zero, others 
positive 

A valley fold 

Non-positive Negative semi-
definite 

Some zero, others 
negative 

A ridge  

Any sign Indefinite Mixed signs Saddle point 
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The end note 

Thanks U
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Gradient 
Hessian 

In two variables, we have peaks, valleys, fold, ridges, and flat planes… 

Only local minimum can have conditions that can easily checked. 
Global minimum does not have “operationally useful” definition or conditons. 

Rules for checking positive definiteness of a matrix. 

Necessary condition: first order derivative is zero. 
Sufficient condition: second order derivative is positive (or positive definite) 
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