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It is a small de tour 
but it is important 
to understand this 
before we move to 
calculus of 
variations. 
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Outline of the lecture 
 Feasible perturbations 
 Second-order term in Taylor series of an n-variable function  
 Sufficient conditions for constrained minimization 
 Bordered Hessian 
 What we will learn: 
 How to interpret feasible perturbations around a constrained local 
minimum 

 Positive definiteness of Hessian is an overkill 
 How to check positive definiteness of the Hessian over the feasible 
perturbations 

 Significance of the bordered Hessian 
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Re-cap of KKT conditions 
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The first of KKT conditions says that the gradient of the objective function is a 
linear combination of the gradients of the equality and active inequality 
constraints. 
Lagrange multipliers of inequality constraints cannot be negative; those of 
equality constraints can be any sign. 
Complementarity conditions (the third line) help decide if a constraint is active or 
not. 
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What if we maximize? 
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Notice the change in the sign of the Lagrange multipliers. 
 
Now they need to be non-positive; that is, they cannot be positive. 
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What if we flip the inequality sign? 
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Notice the change in the sign of the Lagrange multipliers. 
 
Now they need to be non-positive; that is, they cannot be positive. 
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What if we maximize and flip the 
inequality sign? 
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Notice the sign of the Lagrange multipliers. 
 
Now they need to be non-negative again. 
 Two negatives annul each other’s effect. 
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Feasible perturbations; constrained 
subspace 
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For sufficient conditions, we need to consider only feasible 
perturbations.. 

Consider m equality constraints plus active inequality 
constraints such that they are linearly independent. 

Together they represent a “hyper surface” of 
dimension (n-m) 

1 0h =

2 0h =

We need to verify sufficiency by taking perturbations only in S, which is called the 
constrained subspace. 
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First order term of f(x) in the constrained 
subspace 
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∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂

T TT f fz s
d s d d

Recall from Slide 13 in Lecture 5 

where 

After eliminating the s variables, we can think of as some other 
function z that depend only on d. So, we can write in a shorthand 
notation:  

where 
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Second-order derivative (Hessian) of f in 
the constrained space 
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∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂

T TT f fz s
d s d d

By differentiating the above first-order term, we get the second 
order term. 
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Hessian of  f  in the constrained space 
(contd.) 
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In the above expression, we know how to compute all quantities except           .  
 
This, we will compute in the same way as          , i.e., using      
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Hessian of the constraints in the 
constrained space 
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Requires that the second-order perturbation of the m constraints 
also be to be zero for feasibility. Therefore… 
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From Slides 10 and 11… 
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Recall from Slide 15 in Lecture 5 that 
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And now the complete Hessian in the 
constrained space… 
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Where  

The long 
expression of the 
last slide reduces 
to this because of 
the way we had 
defined the 
Lagrangian, L. 

This is the sufficient condition for the 
constrained minimum. 
Note that the perturbations are only 
in the independent d variables. 
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Sufficient condition for a constrained 
minimum 
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Therefore, we get: 
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Sufficient condition for a constrained 
minimum 
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Where  

with 

Only feasible 
perturbations 
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How do we check this easily? 
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with 
Note that this is a less stringent sufficient condition than 
requiring the positive definiteness of the Hessian at the 
minimum point. 
We want positive definiteness only in the subspace formed 
by feasible perturbations in the neighborhood of the 
minimum. 
So, requiring positive definiteness of the Hessian is an 
“overkill”! 
But how do we check this restricted positive definiteness? 
Next slide… 
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Bordered Hessian 
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with 

The above condition is satisfied if the last (n-m) 
principal minors of the bordered Hessian, Hb (defined 
below) have the sign (-1)m.  

Bordered Hessian is simply Hessian of the Lagrangian bordered by the gradients of 
equality and active inequality constraints. 
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Bordered Hessian check 
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Last principal minor Last-but-one principal minor Last-but-two principal minor 
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Example 
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is a solution. Let us check the sufficiency. 



Variational Mehthods and Structural Optimization ME 256 / G. K. Ananthasuresh, IISc 

Example (contd.) 
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Eigenvalues of H are: -1.0000, 0.5858, and 3.4142; Not positive definite!  

λ
λ

λ

 −   − 
   − − −   = =
   +
   

+      

0 1 0 0 0 1 0 0
1 0 0 1 1 0 0

0 0 2 1 0 0 1 1
0 0 1 4 0 0 1 3

BH

n - m = 3 – 1 = 2; So, last two principal minors should have the sign of (-1)m = -1. That is 
they should be negative. 
Last principal minor = -2; it is fine. 
Last-but-one principal minor = -1; it is also fine. So, we have a minimum. 

So, consider 
the Bordered 
Hessian: 
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The concept of optimization search 
algorithms 

 Optimization search algorithms work like you would walk blindfolded 
in a rough terrain! 

 They are iterative. They move from one point to another and eventually 
converge to a minimum at which KKT conditions are satisfied. 

 They need an initial guess. 
 Various algorithms differ in the way they choose a search direction. 
 Once the search direction is chosen, the algorithms needs one-variable 
search to decide how much to move in that direction. This is called line 
search. 
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Updated variable Search direction 

Iteration number 

Line search parameter 
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The end note 
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Thanks 
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The concept of search algorithms 

Constrained positive definiteness using  
bordered Hessian 

Recap of KKT conditions 

Feasible perturbation 
2nd order term in Taylor series expansion of an n-variable function with 
constraints 

Constrained subspace; Sufficient conditions for constrained minimization 
Positive definiteness of the Hessian within the constrained subspace 
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