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Mathematical Preliminaries to  
Calculus of Variations 

(contd.)  
 

Banach space 
A complete normed vector space is called a Banach space.  
A normed vector space X  is complete if every Cauchy sequence from X  has 
a limit in X . 
A sequence { }nx  in a normed vector space is said to be Cauchy (or fundamental) 
sequence if 0    as ,n mx x n m− → →∞    
In other words, given 0ε >  there is an integer N  such that n mx x ε− <   for all 

,m n N>  
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x X∈  is called a limit of a convergent sequence { }nx  in a normed vector space if 
the sequence { }nx x−  converges to zero. In other words, lim 0nn

x x
→∞

− = . 

Verifying if a given normed vector space is a Banach space requires an 
investigation into the limit of all Cauchy sequences. This needs tools of real 
analysis. We are not going to discuss them here. But let us try to relate to these 
sequences from a practical viewpoint and why we should worry about them. 
In the context of structural optimization, we can interpret sequences as candidate designs 
that we obtain in a sequence in iterative numerical optimization. A design in structural 
optimization is represented with a function. As you may be aware, any numerical 
optimization technique needs an initial guess, which is improved in each iteration. Thus, 
we start with a function (vector) and then iteration 1 gives another function, iteration 2 yet 
another, and so on. Therefore, we get a sequence of “vectors” (i.e., functions). Whether 
such a sequence converges at all or converges to a limit within the space we are 
concerned with, are practically relevant questions. The abstract notion of a complete 
normed vector space helps us in this regard. So, it is useful to know the properties of a 
function space that we are dealing with. It is one way of knowing if numerical 
optimization would converge to a limit, which will be our optimal solution.  
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Hilbert space 
A complete inner product space is called a Hilbert space. 
An inner product space (or pre-Hilbert space) is a vector space X  with an inner 
product defined on it. 
An inner product on a vector space X  is a mapping X X×   into a scalar field K  
of X  denoted as , ,    ,x y x y X∈  and satisfies the following properties:  
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Note the following relationship between a norm and an inner product. 
 ,x x x=  

Note also the relationship between a metric and an inner product. 
 ( ), ,d x y x y x y x y= − = − −  

As an example, for 0[ , ]C a b , the norm and inner product defined as follows. 

 

2 ( ) ,

, ( ) ( )

b

a

b

a

x x t dt x x

x y x t y t dt

= =

=

∫

∫
 

Thus, inner product spaces are normed vector spaces. Likewise, Hilbert spaces 
are Banach spaces. 
Normed vector spaces give us the tools for algebraic operations to be performed 
on vector spaces because we have the notion of how close things (“vectors”) are 
to each other by way of norm. Inner product spaces enable us to do more; they 
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allow us to study the geometric aspects. As an example, consider that 
orthogonality (or perpendicularity) or lack of it is easily noticeable from the inner 
product. 
For , ,if , =0 , then  is said to be orthogonal to      x y X x y x y∈  
Banach and Hilbert spaces are classes of useful function spaces (again remember 
that a function space is only one type of the more general concept of a vector 
space). There are also some specific function spaces that we should be familiar 
with as they are the spaces to which the design spaces that we consider in 
structural optimization actually belong. 
 
Lebesgue space 
A Lebesgue space defined next is a Banach space. 
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= ≤ < ∞ 
 
∫

 

 
The case of 2q =  gives ( )2L Ω  consisting of all square-integrable functions. The 
integration of square of a function is important for us as it often gives the energy 
of some kind. Think of kinetic energy which is a scalar multiple of the square of 
the velocity. On many occasions, we also have other energies (usually potential 
energies or strain energies) that are squares of derivatives of functions. This gives 
us a number of energy spaces. The Sobolev space gives us exactly that. 
 
Sobolev space 
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Dα  used above denoted the derivative of order α . Sobolev space is a Banach 
space. 
Note: We have used the qualifying word “compact” for K  above. A closed and 
bounded set is called a compact set. We will spare us from the definitions of 
closedness and boundedness of a set because we have already deviated from our 
main objective of knowing what a functional is. Let us return to functionals now. 
We have defined a functional as a particular case of an operator whose range is a 
real (or complex) number set. Let us also consider another definition which says 
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the same thing but in a different way as we have talked much about vector spaces 
and fields. 
 
Functional—another definition 
A functional J  is a transformation from a vector space to its coefficient field 

: .J X K→  
Let us now look at certain types of functionals that are of main interest to us. 
A linear functional is one for which   
( ) ( ) ( )     for all ,J x y J x J y x y X+ = + ∈  and ( ) ( )    for all ,  J x J x K x Xα α α= ∈ ∈  

hold good. Some people write the above two linearity properties as a single 
property as follows. 
( ) ( ) ( )     for all , ; ,J x y J x J y x y X Kα β α β α β+ = + ∈ ∈  

A definite integral is a linear functional. We will deal with a lot of definite 
integrals in calculus of variations as well as variational methods and structural 
optimization. 
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A bounded functional is one when there exists a real number c  such that 
( )J x c x≤  where  is the norm in ;  is the norm in K X⋅ ⋅ . 

 
Continuous functional 
Now, we have discussed in which function spaces our functions reside. In 
calculus of variations, our unknowns are functions. Our objective is a functional. 
Just as in ordinary finite-variable optimization, in calculus of variations too we 
need to take derivatives of functionals. What is the equivalent of a derivative for 
a functional? Before we define such a thing, we need to understand the concept of 
continuity for a functional. We do that next. 
 
A functional J   is said to be continuous at x  in D  (an open set in a given normed 
vector space X  )  if J  has the limit ( )J x  at x  . Or symbolically, ( ) ( )lim

y x X
J y J x

→ ∈
= . 

is said to be continuous on D  if J  is  continuous at each vector in D . 
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J  has the limit L   at x  if for every positive number ε  there is a ball ( )rB x  (with 
radius r ) contained in  D  such that ( )L J y ε− <  for all ( )ry B x∈ . Or symbolically,      

( )lim =
y x X

J y L
→ ∈

. 

 
 


