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First Variation of a Functional  
 

The derivative of a function being zero is a necessary condition for the 
extremum of that function in ordinary calculus. Let us now consider the 
equivalent of a derivative for functionals because it plays the same crucial 
role in calculus of variations as does the derivative of the ordinary 
calculus in minimization of functions. Let us begin with a simple but a 
very important concept called a Gâteaux variation. 
 
Gâteaux variation 
 
The functional ( )J xδ  is called the Gâteaux variation of J  at x  when the 
limit that is defined as follows exists. 
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        ( ) ( )
0

( ; ) lim
J x h J x

J x h
ε

ε
δ

ε→

+ −
=  where h  is any vector in a vector space, X . 

 
Let us look at the meaning of h  and ε  geometrically. Note that ,x h X∈ . 
Now, since x  is the unknown function to be found so as to minimize (or 
maximize) a functional, we want to see what happens to the functional 

( )J x  when we perturb this function slightly. For this, we take another 
function h  and multiply it by a small number ε . We add hε  to x  and look 
at the value of ( )J x hε+ . That is, we look at the perturbed value of the 
functional due to perturbation hε . Symbolically, this is the shaded area 
shown in Fig. 1 where the function x  is indicated by a thick solid line, h  
by a thin solid line, and x hε+  by a thick dashed line. Next, we think of the 
situation of ε  tending to zero. As 0ε → , we consider the limit of the 
shaded area divided by ε . If this limit exists, such a limit is called the 
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Gâteaux variation of ( )J x  at x  for an arbitrary but fixed vector h . Note 
that, we denote it as ( ; )J x hδ  by including h  in defining Gâteaux variation. 
 

 
Figure 1. Pictorial depiction of variation hε  of a function x  
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Although the most important developments in calculus of variations 
happened in 17th and 18th centuries, this formalistic concept of variation 
was put forth by a French mathematician Gâteaux around the time of the 
First World War. So, one can say that intuitive and creative thinking leads 
to new developments and rigorous thinking makes them mathematically 
sound and completely unambiguous. To reinforce our understanding of 
the Gâteaux variation, let us relate it to the concept of a directional 
derivative in multi-variable calculus. 
 
A directional derivative of the function ( )1 2, ,........., nf x x x  denoted in a 
compact form as ( )h f x∇ , in the direction of a  unit vector h  is given by 

              
( ) ( )

0
lim

f x h f x
ε

ε

ε→

+ −
. 
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Here the “vector” is the usual notion that you know and not the extended 
notion of a “vector” in a vector space. We are using the over-bar to 
indicate that the denoted quantity consists of several elements in an array 
as in a column (or row) vector. You know how to take the  derivative of a 
function ( )f x  with respect to any of its variables, say , 1ix i n≤ ≤ . It is 
simply a partial derivative of ( )f x  with respect to ix . You also know that 
this partial derivative indicates the rate of change of ( )f x  in the direction 
of ix . What if you want to know the rate of change of ( )f x  in some 
arbitrary direction denoted by h ? This is exactly what a directional 
derivative gives. Indeed, ( ) ( ) ( )T

h h hf x f x h f x h∇ =∇ ⋅ = ∇ . That is, the 
component of the gradient in the direction of h . 
 
Now, relate the concept of the directional derivative to Gâteaux variation 
because we want to know how the value of the functional changes in a 
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“direction” of another element h  in the vector space. Thus, the Gateaux 
variation extends the concept of the directional derivative of finite multi-
variable calculus to infinite dimensional vector spaces, i.e., calculus of 
functionals. 
 
Gâteaux differentiability 
If Gateaux variation exists for all h X∈  then J  is said to be Gateaux 
differentiable. 
 

Operationally useful definition of Gâteaux variation 
Gateaux variation can be thought of as the following ordinary derivative 
evaluated at 0ε = . 
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                   ( ) ( )
0

; dJ x h J x h
d ε

δ ε
ε =

= +  

 
This helps calculate the Gâteaux variation easily by taking an ordinary 
derivative instead of evaluating the limit as in the earlier formal definition. 
Note that this definition follows from the earlier definition and the 
concept of how an ordinary derivative is defined in ordinary calculus if 
we think of the functional as a simple function of ε . 
 
Gâteaux variation and the necessary condition for 
minimization of a functional 
 
Gâteaux variation provides a necessary condition for a minimum of a 
functional. 
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Consider  ( )J x  where  ( ),     ,J x x D∈  is an open subset of a normed vector 
space X , and *x D∈  and any fixed vector h X∈ . 
 
If *x  is a minimum, then   
 
    ( ) ( )* * 0J x h J xε+ − ≥  
 
must hold for all sufficiently small ε  
 
Now,  
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( ) ( )

( ) ( )

* *

* *

for  0

                0

and for 0

                0

J x h J x

J x h J x

ε

ε

ε
ε

ε

ε

≥

+ −
≥

≤

+ −
≤

  

 

 
This simple derivation proves that the Gâteaux variation being zero is the 
necessary condition for the minimum of a functional. Likewise we can 
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show (by simply reversing the inequality signs in the above derivation) 
that the same necessary condition applies to maximum of a functional.  
 
Now, we can state this as a theorem since it is a very important result. 

 
Theorem: necessary condition for a minimum of a functional  
  
            ( )*; 0   for all J x h h Xδ = ∈  
 
Based on the foregoing, we note that Gâteaux variation is very useful in 
the minimization of a functional but the existence of Gateaux variation is 
a weak requirement on a functional since this variation does not use a 
norm in X . Without a norm, we cannot talk about continuity of a 
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functional because we cannot judge how close two functions are to each 
other. Thus, Gâteaux variation  is not directly related to the continuity of a 
functional. For this purpose, another differential called Fréchet 
differential has been put forth. 
 
 
Frechet differential  
 

                    ( ) ( ) ( )
0

;
0lim

h

J x h J x dJ x h
h→

+ − −
=  

 
 
If the above condition holds and ( );dJ x h  is a linear, continuous functional 
of h , then J  is said to be Fréchet differentiable at x  with “increment” h .  
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( );dJ x h  is called the Fréchet differential. 

 
If  J  is differentiable at each x D∈  we say that J  is Fréchet differentiable 
in D . 
 
Some properties of Fréchet differential  
 

i) ( ) ( ) ( ) ( ); ;J x h J x dJ x h E x h h+ = + +  for any small non-zero h X∈  has a 
limit zero at the zero vector in X . That is, 

 
       ( )lim ; 0

h
E x h

θ→
= . 
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 Based on this, sometimes the Fréchet differential is also defined as 
follows. 
 

  ( ) ( ) ( );
0lim

h

J x h J x dJ x h
hθ→

+ − −
= .  

 
ii)  ( ) ( )1 1 2 2 1 1 2 2; ; ( ; )dJ x a h a h a dJ x h a dJ x h+ = +  must hold for any numbers 

1 2,a a K∈     and any 1 2,h h X∈ .       
 This is simply the linearity requirement on the Fréchet differential. 
 
iii)  ( ); c    for all dJ x h h h X≤ ∈ , where c  is a constant.   
 This is the continuity requirement on the Fréchet differential. 
 



ME256: Lecture 9                                  Variational Methods and Structural Optimization 

IISc                          14  Ananthasuresh 
 

iv)    

This is to say that the Fréchet differential is a linear functional of h . 
Note that it also introduces a new definition: Fréchet derivative, 
which is simply the coefficient of h  in the Fréchet differential. 

 
 
Relationship between Gâteaux variation and Fréchet 
differential  
 
If a functional J  is Fréchet differentiable at x  then the Gateaux variation 
of J  at x   exists and is equal to the Fréchet differential. That is, 
 
 ( ) ( ); ;    for all   J x h dJ x h h Xδ = ∈  
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Here is why: 
 
Due to the linearity property of ( );dJ x h , we can write 
 
  ( ) ( ); ;dJ x h dJ x hε ε=  
 
By substituting the above result into property (i) of the Fréchet 
differential noted earlier, we get 
 
 ( ) ( ) ( ) ( ); , for any J x h J x dJ x h E x h h h Xε ε ε ε+ − − = ∈  
 
A small rearrangement of terms yields 
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 ( ) ( ) ( ) ( ); ,
J x h J x

dJ x h E x h h
ε ε

ε
ε ε

+ −
= +  

 
When limit 0ε →  is taken, the above equation gives what we need to 
prove: 
 

 ( ) ( ) ( ) ( ) ( )
0 0

lim ; ;     because lim , 0
J x h J x

J x h dJ x h E x h h
ε ε

ε ε
δ ε

ε ε→ →

+ −
= = =  

 
Note that the latter part of property (i) is once again used in the 
preceding equation. 
 

Operations using Gateaux variation   
 
Consider a simple general functional of the form shown below. 
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( ) ( ) ( )( )

( )

2

1

,  ,   

where 

x

x

J y F x y x y x dx

dyy x
dx

′=

′ =

∫
 

 
Note our sudden change of using x . It is no longer a member (element, 
vector) of a normed vector space X . It is now an independent variable 
and defines the domain of ( )y x , which is a member of a normed vector 
space. Now, ( )y x  is the unknown function using which the functional is 
defined. We need to have our wits about us to see which symbol is used 
in what way! 
 
If we want to calculate the Gâteaux variation of the above functional, 
instead of using the formal definition that needs an evaluation of the limit 
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we should use the alternate operationally useful definition—taking the 
ordinary derivative of ( )J y hε+  with respect to ε  and evaluating at 0ε = . 
In fact, there is an easier route that is almost like a thumb-rule. Let us find 
that by using the derivative approach for the above simple functional. 
 

( ) ( ) ( ) ( ) ( )( )
2

1

,  + ,  
x

x

J y h F x y x h x y x h x dxε ε ε′ ′+ = +∫  

 

Recalling that ( ) ( )
0

; dJ x h J x h
d ε

δ ε
ε =

= + , we can write 
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( ) ( )

( ){ }

2

1

2

1

,  + ,  

                     ,  + ,  

x

x

x

x

d dJ x h F x y h y h dx
d d

d F x y h y h dx
d

ε ε ε
ε ε

ε ε
ε

  ′ ′+ = + 
  

′ ′= +

∫

∫
 

 
Please note that the order of differentiation and integration have been 
switched above. It is a legitimate operation. By using chain-rule of 
differentiation for the integrand of the above functional, we can further 
simplify it to obtain 
 

( ) ( ) ( )
2 2

1 10

;
x x

x x

F F F FJ x h h h h h dx
y h y h y y

ε

δ
ε ε

=

   ∂ ∂ ∂ ∂′ ′= + = +   ′ ′ ′∂ + ∂ + ∂ ∂  
∫ ∫ . 
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What we have obtained above is a general result in that for any functional, 
be it of the form ( , , , , , )J x y y y y′ ′′ ′′′

 , we can write the variation as follows. 
 

( )
2 2

1 1

; ( , , , , , )
x x

x x

F F F FJ x h F x y y y y dx h h h h dx
y y y y

δ
 ∂ ∂ ∂ ∂′ ′′ ′′′ ′ ′′ ′′′= = + + + + ′ ′′ ′′′∂ ∂ ∂ ∂ 

∫ ∫  . 

 
Note that in taking partial derivatives with respect to y  and its derivatives 
we treat them as independent. It is a thumb-rule that enables us to write 
the variation rather easily by inspection and using rules of partial 
differentiation of ordinary calculus. 
 
We have now laid the necessary mathematical foundation for deriving the 
Euler-Lagrange equations that are the necessary conditions for the 
extremum of a function. Note that the Gâteaux variation still has an 
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arbitrary function h . When we get rid of this, we get the Euler-Lagrange 
equations. For that we need to talk about fundamental lemmas of calculus 
of variations. 
 
Variational Derivative 
We have studied Gâteaux variation and Fréchet differential and the 
relationship between them. There is one more subtle variant of this, which 
is called the variational derivative. It is useful in some applications and in 
proving some theorems. More importantly, it tells us an alternative way 
of looking at the concept of variation based purely on the techniques of 
ordinary calculus. In fact, it can be interpreted as the “partial derivative” 
equivalent for calculus of variations. As the history goes, Euler had 
apparently derived his eponymous necessary condition using this concept.  
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Let us begin with the notation. The variational derivative of a functional 

0

( , , )
fx

x

J F x y y dx′= ∫  is denoted as J
y

δ
δ

 and is given by 

y
J d FF
y dx y

δ
δ

 ∂
= −  ′∂ 

 (1) 

You may observe that it is nothing but the Euler-Lagrange expression that 
should be zero. When J  has a more general form, the expression for J

y
δ
δ

 

will be the corresponding expression in the E-L equation that we equate 
to zero. Let us see what rationale underlies this definition. 
 

Because we want to use only the techniques of ordinary calculus, let 
us “discretize” ( )y x  and consider finitely many discrete points 
( )1,2,.......,kx k N=  within the interval ( )0 , fx x .  See Fig. 1. As can be seen in 
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this figure, by way of discretization, we are approximating the continuous 
curve of ( )y x  by a polygon.  

 

 
Figure 1. Discretization of a continuous curve ( )y x  by a polygon. All 
subdivisions on the x -axis are equal to x∆ .  A local perturbation at kx  is 
considered and its effect is shown with the dashed lines. 
 

0x  1x  2x  kx  Nx  fx  
x  

( )y x  k y xσ δ∆ = ∆  
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Now, the functional can be approximated as follows. 

 
1
 

N

k=
∑ 1 1

1
1 11

( ) ( ), , ( ) , ,
( )

N N
k k k k

N k k k k k k
k kk k

y y y yJ J F x y x x F x y x
x x x

+ +
+

= =+

 − − ≈ = − = ∆   − ∆  
∑ ∑  (2) 

where in the last step we have assumed that all subdivisions along the x -
axis are equal to x∆ . Our variables to minimize NJ  are now { }1 2, , , Ny y y . 
Consider the partial derivative of  NJ  with respect to ky . 
 

   

         (3)                                                                                                             
 
Here, we have just used the chain rule of differentiation. As 0x∆ → , the 
RHS of Eq. (3) goes to zero. Now, divide the LHS and RHS of Eq. (3) by 

x∆   to get  
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1 1

1 1
1

( ) ( )( , , ) ( , , )( )( , , )
k k k k

y k k y k k
N k k

y k k
k

y y y yF x y F x yJ y y x xF x y
y x x x

− +
′ ′− −

+

− −
−∂ − ∆ ∆= +

∂ ∆ ∆ ∆
  

        (4) 
 
When 0x∆ → , ky x∂ ∆ , which can be interpreted as the shaded area in Fig. 1, 
also tends to zero. In fact, we then denote ky x∂ ∆  as kσ∆  or, in general, 
simply as yδ  evaluated at kx x= . Furthermore, as  0x∆ → , NJ J→ . We take 
the limit of Eq. (4) as 0x∆ → . 
 

 ( )
0

lim N
y yx

k

J J dF F
y x y dx

δ
δ ′∆ →

∂
= = −

∂ ∆
 (5) 
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Notice how we defined the variational derivative in Eq. (5). We can think 
of J

y
δ
δ

 as the limiting case of     ( ) ( )J y h J y
σ

+ −
∆

   where h  is the perturbation 

(i.e., variation) of y  at some x
∧

 and  σ∆  is the extra area under ( )y x  due to 
that perturbation. Therefore, we write 
 

 ( ) ( )
x x

JJ J y h J y
y

δ ε σ
δ ∧

=

  ∆ = + − = + ∆ 
  

 (6) 

 
where ε  is a small discretization error. When the discretization error is 
insignificantly small, we can write 
 

 
x x

JJ
y

δ σ
δ ∧

=

∆ ≈ ∆  (7) 
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Thus, the variational derivative helps us get the first order change in the 
value of the functional for a local perturbation of ( )y x  at ˆx x= . Think of 
Taylor series of expansion of a function of many variables and try to 
relate this concept of first order change in the value of the function. 
 


