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Outline of the lecture

Three problems and their solutions from the midterm examination of
2017.

What we will learn:

How to apply the concepts and ideas learned so far to solve problems in
calculus of variations.




Midterm question paper

Question 1 /7 marks)
Find the Gateaux variation of the following functional.

J= {_[ {20 im(F ()} i }
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Note: {mv(f(x))} = 7

Question 2 (8 marks)
Write the boundary conditions at A and B for the beam shown in the figure.

Question 3 (10 marks)
Find the functional, which when extremized, would give the differential equation:
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Question 1 (7 marks)
Find the Gateaux vanation of the following functional.
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Solution to problem 1

Question 1 /7 marks)
Xo Find the Giteaux variation of the following functional.

J = j{ f (X)Zinv( f (X))} dx J={T{f1{x) fmy{f{x))}:ﬁ:}
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Begin with the definition of Gateaux variation:

Srond = é(xf [{ f(x)+£h(x)} 7 inv( f (x) + gh(x))} dx}

4! e=0
Interchange the order of differentiation and integration.
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Solution to Problem 1 (contd.)
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Sred = | ai {F00+8h00} V(£ () +2h00) [dX  product e

—j[ f1+gh inv f+gh)h+{f+gh}2a{inv(f+g(;1)}}dx D

os

&=0

i{inv(f +ch)} =2

De How do we get this?

Note that % { | nv(g ( ))} L Why is this true?

g'(inv(g(x))




Solution to Problem 1 (contd.)

g(inv(g(x)) =X Definition of the inverse of a function.

, ]
Differentiate both sides to get < Tobe read as (J of lnv(g (X))
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0'(nv(g () {iv(g ()} =1= —{iv(g0O)} =

1
(a+g(x)) of (inv(a+ g(x))

Similarly;, %{inv(ﬂ g (X))} =

b
(a+g(x)b) of (inv(a+ g(x)b)
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and &{mv(a+ g(x)b)} =



Solution to Problem 1 (contd.)

An example to understand.

Note that _ and verity the above calculation.

i{inv(a+ g(x)b)} = : b

OX (a+g(x)b) of (inv(a+ g(x)b)

By following the preceding i {inv( f 4 Sh)} _ h

equation, we can write: e (f +&h)’ of |nv( f+ Eh)



Solution to Problem 1

5 h
ubstitute ~ f h)y=
Substitut 85{"“/( +eh)} (f +&h) of inv(f +¢h)

Xy

in 5y yd = j{z{f +ehbinv(f +eh)h+{f +gh}2%{inv(f +gh)}}dx

X =0
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Question 2 (8 marks)
Write the boundary conditions at A and B for the beam shown in the figure.




Solution to Problem 2

*2
Question 2 (§ marks) (F 1% oy ')| =0
Write the boundary conditions at A and B for the beam shown in the figure. 1

<(F;—(F;)'] é'y}x2 =0 and
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] le
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(Fy’ _(Fy"),lgy | =0 )

In this problem, we minimize: (load is not considered)
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Solution to Problem 2

_ n2 1
F_EEI(W) Emf:o

This term in J leads to

AtA... ﬁ

(Fy, — (Fy,,) j(Sy =( @ _Elw;:’z ) + kwx:O =0 Shear force is equal

to the spring force.

and and
Fy”gy"xz _ @ Emw'sw| =0=E'"| =0

Since the slope is not specified.




SOlutiOn to PrOblem 2 If slope at B is permitted

to change...

Sy = SW = ¢"5x
But here, ¢):':L =0

So, we should consider:

ol (Fy ), =0
2 ) AtB...
a0 (Ew"sw) =0

x1

@ If we assume that the

. AtB... slope at B is allowed to
{(E El(w')" —(EW') (tana—w')+Elw" (0~ w'”))} =0 hne
. (Ew) =0

This assumes that the slope at B is not permitted to change.

So, W)'(ZL =0 (This must be specified.) L.e, moment IS zero.



Question 3 (10 marks)

Find the functional, which when extremized, would give the differential equation:
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Solution to Problem 3

Question 3 /10 marks)
Find the functional, which when extremized, would give the differential equation:

&'e &0 _ 60
N
82 ¢ 82 ¢ a ¢
5X2 + 8}’2 =C E Given differential equation.
62 ¢ 62 ¢ 8 ¢
_[ > /4 dQQ=0 Multiply by a trial function and integrate.
OX* ay at

Combine and split.
S (a%j 2, 2oy _pov_ b 4o
OX \_OX oy \ oy OX OX oy oy ot
Separate the terms.

:>J- 8¢8y/+8¢8y/ j ( j+a 8¢W 4O =0
L OX OX oy oy at 2 oy \ oy
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Solution to Problem 3

(282 200058, g (2(24,),2(%, )ia-
2\ OX OX oy oy ot OX \_ OX oy \ oy

Using Divergence theorem on the second term, and equating the domain and boundary terms
to zero.

0¢ Oy 8¢6w 6¢ ~ 09 . B
:gj;(ax 8x+8yay p de Oandj.( y/|+6ywjjnd8£)—0

The term in red is asymmetric, making this ditferential operator non-self-adjoint.

The asymmetric term is a dissipative term. So, let us add a generative term.
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Solution to Problem 3

Consider this problem (written on the basis of the last equation in the preceding slide.

PN A T L
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wanwin” ) X ox oy oy 2o’ 2at
Data :c
Noting that F = a¢6l//+a¢ 61//4—2%(//_2&_(//
OX OXx oy oy 2ot 2 ot

we write two Euler-Lagrange equations.

oOF _0(oF)_ofaF| afaF)_,
op ox\og, ) oyl og, | ot og

oOF _o(oF ) ofoF ) afoF)_,
oy oOx\dy, ) oy\ oy, | ot\ dy,




Solution to Problem 3 (contd.)

F:[a¢aw+a¢aw+ca¢ C oy j

X ox oyoy 20t 2ot

OF _O0foF) afaF ) afoF)_,
o¢ ox\og, ) oy|\og, | ot\og )

2 2
:_Eﬁl//_f}(ét//j_ﬁ oy _Q(EWJZO:E}V/JFGWZ_C@_W
2 ot oOx\ox ) oy\ oy 2

aF_aﬁaF J_a OF _8(8F)_0
0 4 OX @% ay aWy ot 8l/jt This is what we need:

_Cop_ a(aqﬁj_ 0 (6¢j‘g(—£¢j=0=>azf+azfzc%
20t ox\ox) oy\oy ox° oy ot
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The end note

For Gateaux variation, simply apply the operationally useful definition and
follow the rules of differentiation. There is absolutely no trick involved.

For beams, we should write all four boundary conditions as you we still
have a fourth-degree differential equation.

For “inverse E-L problem”, first check if the differential operator is self-
adjoint (i.e., there are no asymmetric terms).

If the ditferential operator is not self-adjoint, it then means that there is
“dissipation” in the systems. Then, try to use either an integrating factor
(there is guesswork here) or a parallel generative system.

Calculus of variations is straightforward to use if you are

clear about all concepts. No other tricks are needed. \/
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Practice problems in calculus of variations
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