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SUMMARY

A new method for non-linear programming in general and structural optimization in particular is presented.
In each step of the iterative process, a strictly convex approximating subproblem is generated and solved. The
generation of these subproblems is controlled by so called ‘moving asymptotes’, which may both stabilize and
speed up the convergence of the general process. :

1. INTRODUCTION

In this paper a new method for structural optimization is presented. The method, which is called
the ‘method of moving asymptotes’ and MMA, is based on a special type of convex approximation.

Ideally, a method for structural optimization should be flexible and general. It should be able to
handie not only element sizes as design variables, but also, for instance, shape variables and
material orientation angles. It should also be able to handle ‘all kinds’ of constraints, provided only
that the derivatives of the constraint functions with respect to the design variables could be
calculated (analytically or numerically). Thus, the method should be able to handle general non-
linear programming problems. In addition, it should take into consideration the characteristics of
structural optimization problems, e.g. usually very expensive function evaluations but still the
possibility to calculate gradients. Further, the method should be ‘stable’ and generate a sequence of
improved feasible (or almost feasible) solutions of the considered problem,

We hope, and believe, that these requirements and wishes are to a rather large extent met by the
method of moving asymptotes. In addition, MMA. is €asy to implement and use.

The outline of the paper is as follows: in section 2 the method is presented in rather general terms,
whereas a more technical description is given in section 3. In section 4 a dual method is suggested
for solving the subproblems generated by the method. In section § it is shown how to avoid the
unpleasant situation that a subproblem becomes infeasible. Finally, in section 6, some interesting
numerical test results are presented. '

2. GENERAL DESCRIPTION OF THE METHOD .

Consider a structural optimization problem of the following general form:

P: minimize
. fo®) (xeR")
subject to
X<, fori=1,...,m
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and
g_cjéxjiifp f()rj=1,...,n

where x =(x,,...,x,)" is the vector.of design variables, fo(x)is the objective function, typically the
structural weight, f,(x)<f; ate behaviour constraints, typically limitations on stresses and
displacements, x; and %; are given lower and upper bounds (‘technological constraints’) on the
design variables.

A well established general approach for attacking such problems is to generate and solve a
sequence of explicit subproblems according to the following iterative scheme:

Step 0. Choose a starting point x%, and let the iteration index k = 0.

Stepl. Given an iteration point x* calculate fi(x®) and the gradients Vf,(x®) for i =
0,1,....,m

Step I - Generate a subproblem P™ by replacing, in P, the {usually impilicit) functions f, by
approximating explicit functions ¥, based on the calculations from step 1.

Step IIL. Solve P™® and Iet the optimal solution of this subproblem be the next iteration point
x**1 Let k=k+1 and go to step L.

The process is interrupted when some convergence criteria are fulfilled, or simply when the user is
satisfied with the current solution x®,

This general approach was suggested for element sizing problems already in Reference 1, where
it was further suggested that, for i >0, the approximating function ¥ should be obtained by a
linearization (i.e. a first order Taylor expansion) in the reciprocal elemental sizes (1/x;) of £, at the
current iteration point x®, while /% should be chosen identical to fo-

A generalization of the method in Reference 1, to other structural optimization problems than
just element sizing, was recently proposed in Reference 2, where it was suggested that each £
should be obtained by a linearization of £ in ‘mixed’ variables; either x; or 1/x; dependent on the
sign of the derivative 0f/dx; at x®. '

The method suggested in this paper (MMA) may beinterpreted as a further generalization of the
method in Reference 2. In brief, cach f® is obtained by a linearization of fiin variables of the type
1/(x; — L;) or 1/(U; — x;) dependent on the signs of the derivatives of Si at x®, The values of the
parameters L; and U are normally changed between the tterations, and we will sometimes refer to
L; and U; as ‘moving asymptotes’. , '

It may casily be shown that the method of Reference 2 is obtained as a special case of MMA by
JettingL; = 0 and U;~ oo. ' ‘ ,

However, by permitting also other values of L;and U;, a more flexible and powerful method is
obtained. In particular, as will be demonstrated on a simple e’xgtﬂa@é; these parameters can be used
to efficiently stabilize the general approach described above, T

It should perhaps also be noted that when MMA is used, the variables are not required to be
non-negative. In fact, MMA is sensitive to neither translation nor scaling of the variables.

3. TECHNICAL DESCRIPTION OF THE METHOD

MMA follows the general approach (steps 0-I11I) described in the previous section, Thus, to define
the method, it must be described:

(a) how the functions % should be defined
(b) how the subproblem P® should be solved, given that the f® have been chosen.

We start with the first question, i.e. how to choose f®. The question of how to solve P® js left to
section 4,
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Given the iteration point x® (at iteration k), values of the parameters L and U are chosen, for
ji=1,...,n, such that . T '
K
LP <xP < UP : 6

Different rules for how to choose these values are discussed in detail later.
Then, for each i=0,1,...,m, f¥ is defined by ' :

'fwwa@+i( G- ﬁ’) . @

&) — R
=1 UJ —xj x_, L}

where - T _
?(k) _ (UP —xPyoffox;, . if 8f,/0x;>0 3)
70, if 3f,/0x; <0
w_ 0 iAo, >0 : @
W= o — L0y afjox, i fyfox, <0
. pf q®
H = f(x®) ~ ',-Z& ( P - = + ) = I (5)

where all derivatives 0f;/0x; are evaluated at x =x®.
Then, as is easily checked, /% is a first order approximation of fiat x®, je.

fEE®) = £,x™) and 0fP/ox;=af,/0x, at x = x¥

fori=0,1,....m andj=1,...,n
Further, the second detivatives of /¥, at any point x such that LY < x; < UP for all j, are given
by : .

PP 2wk 24

i} ©
ox; (UP—x)* " (x;— Ly
and ,
angk)
i i
0x; 0%, 0ifj#
Thus, since p? >0 and ¢f >0, f¥ is a convex function. In particular, at x = x®
20f,/ox; |
2rp | TP 105/04>0 .
7= o |
Ox; 201,/0x; it 011/, <0

Tl gl
xj9 — L§

Thus, the closer L{" and U® are chosen to x§, the larger become the second derivatives, the more-

curvature is given to the approximating functions f{, and the more conservative becomes the
approximation of the original problem. More precisely, the following holds.

Assume that f{¥ and 7 are two- different approximating functions corresponding to the
parameter values {L{, UP} and {I{, TP}, respectively. If it holds that P <P <xP <
OP<UP for all j, then, for all points x such that I¥ <x; < W for all j, it holds that
FPx) < FPx). :

The proof of this statement, which easily follows by straightforward calculations, is omitted here.

Correspondingly, if I’ and U™ are chosen far away’ from x®, then % becomes close to linear,
i.e. without any curvature for all reasonable x, i.e. for those x which are close to x® compared to
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L% and U%. In the extreme case that ‘LP = —.co” and “UP = + oo’ for all j, then the £ become
(in the limit as L¥ — — co and U - + oo} identical to the linear functions

TR =fi6%) + 3106/ 0x;) ey — xF)

which are the approximating functions used in the well-known “sequence of linear programmes’
method, which has been used for structural optimization in Referesice (3), for instance.

_If, instead, L® =0 and ‘U ="+ o’ for all j, then the £ become (in the limit as U - o)
identical to the approximating functions used in the method suggested in Reference 2. In this case
¥ becomes linear in the variable x; if 8f,/6x; 20 and strictly convex in x; if 0fifox; < 0.

In MMA, the values of L and U are always finite. Then each £ becomes strictly convex in
all variables x; except in those for which 8£,/dx; =0 at x = x®. (If 31,/0x ;=0 at x =x® then f®
becomes independent of x;) Now, with the approximating functions f¥ defined by (2), the
following subproblem, called P®, is obtained: :

P®: minimize

k k.
ﬁ:( sy 4o 457 )+r(k)
FNUP —x; = LP )70

subject to

PN o
U x. T X _@ +r<f, fori=1,...,m
J R | i - .

I~]=

I
and L
- max {x, eP} < x; < min{X;, O} forj=1,....n

Here, the parameters a{” and % are ‘move limits’ which are probably not very crucial, However, to
avoid the possibility of any unexpected ‘division by zero’ while solving the subproblem, & and g%
should at least be chosen such that

LP <o <xP < pP <UP (8)

for example ¢ = 0-9L® + 0-1x{ and p¥ = 09UP 4 0-1x{.
It will now briefly be discussed how to choose values for thé ‘moving asymptotes’ L¥ and U®.
Provided that the given lower and upper bounds x; and %; on the variables are ‘physically

reasonable’, a simple choice is to let
L,(fk)z?fj_'so(ij"lcj} ~and U}k)“—'fj"]' 50(?-5;_3_‘;) (9}

where s, is a fixed real number, say s, = 01. Here, L¥ and U do not depend on %, i.e. they are
‘fixed asymptotes’ rather than ‘moving’,

An important special case of ‘fixed asymptotes’ occurs when x; stands for the transverse size of an
element (or a group of elements). Then it is often reasonable to let !

TLP=0 and UP= ‘alarge number’, say 10%; _ (10}

Even if the simplicity of ‘fixed asymptotes’ is appealing, we believe that in order to fully exploit the
flexibility: of MMA;.one must permit the asymptotes to move in soine cléver way between the
iterations. . : L : .

A general (although heuristic) rule for how to change the values of L¥ and U is the following:

{a) If the process tends to oscillate, then it needs to be stabilized. This stabilization may be
accomplished by moving the asymptotes closer to the current iteration point. - '



THE METHOD.OF. MOVING'ASYMPTOTES 363

{b) If, instead, the process is monotone: and slow, it needs to be ‘relaxed’. This may be
accomplished by moving the asymptotes away from the current 1terat10n point.

A simple implementation of this ‘rule’ is the foliowmg Here, sis a given real number less than unity,

e.g s=07.
For k=0and k=1, let \
LP =xP — (%~ x)) and;: UP = x + (%, — x;) o (L1}
Fork>=2 :

(a) If the signs of x{ — x{*~ " and x{F~ 1 — x(" 2’ are opposite, 1nd1cat1ng an oscillation in the
variable x; then let ‘

L}k) - xg_k) _y x-(]_ki—l) _ Lgk-n)

O =P + (U ) ”2)

(b) If the signs of x{ — x%~1 and x{¥~* — x{~2 are equal, indicating that the asymptotes are
slowing down the convergence in the variable x,, then let

R e

. & ] (13)
U =)+ (U —xf=Dyfs

There are, of course, a lot of possible aiternatives to this implementation. Ose could, for example,
refuse to ‘relax’ the asymptotes unless all three of x("’——xY‘ DxF D~ xBP and x#2 —x§E=3
have equal signs, etc. :

One could also use, for mstancc \/s instead of sin (13) so that 1t needs two ‘relaxations’ of
the asymptotes to fully compensate for one t:ghtemng (T his makes the method more conservative
and stable.)

We have, so far, not worked very hard on the question of how to choose values for L# and
U, This is clearly a possible area for further investigations. However, even with the crude
cho:ces suggested above, (9) (13), the method has indeed worked very well on different test
problems. ,

4 A DUAL METHOD TO SOLVE TI—IE SUBPROBLEMS

To simplify notation, we.will in this sectlon suppress the 1terat10n mdex k on the coeiﬁments in

the subproblem. Further, we will write «; mstead -of max{x;,o;}. ,B instead. of min{%,, §;}
and b, instead of f;~—r,.

Then the subproblem P®_ defined in the prevmus sectlon may be wrttten as follows:

P®: minimize .
- e
Z ( pO_r q )+r0

.m-xj x __Lj
subject to _ o
< p! qt .
Z (Uj . +xj—}Lj) b, fori=1,...,m
and
ajng'sﬁja : for j=1:,..,,n

where p;; >0, q,-,-i>'0 and L; <djs B;<U,
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P® is a convex, separable problem. Therefore, 2 dual method analogous to the ones described
in References 4 and 5.could be used for its solution. Such a method will here be described.
The Lagrangian function corresponding to P® is given by

I, 3) =100+ 3. 5f P
which, after trivial calculations, equals -

5 (Pos+Y'B; | o +Y'G;
ro—Y'b+ ( J + =
O‘ y j;]_ U_,-—xj_ xJ—LJ-

=ry— yTb + 'Zi lj(JCj, y)
j=

where _
b=(bli“-1bm)Ts p_i:(plj:"-’pmj)T’ Qj=(QIjs"'SQmj)T»
a y=(y1!sym)T .
and ' 5
o _Poit YR do;+Y¥"g;
Lix, y) =29 i j J
655.9) U;—x; * X~ L

y is the vector of Lagrange multipliers or ‘dual variables’. .
Next, the ‘dua] objective function’ W is defined, for y >0 (ie. all y,20), as follows:

W(y)= min {{(x,y);0;< x, < §; for all j}

X -

=ro=¥"b+ 3 W)
i~
where

Wi(y) = min{l;(x;, y); o; < x; <Bj} ' ' (14)
Xy .

It will now be shown that it is easy to write down, explicitly, the minimizing x; in (14). This

minimizing x;, which clearly depends on y, will be denoted by x;(y).

First note that since y > 0 it follows that p,, i+Y'p; =0 and go; +y"q; > 0. Therefore, I;(x;, y) is
convex as a function of x;. Next, note that in the rare case that Po;+Y p;=0and go;+y"q; =0
(ie. po;=0,40;="0,y,p;=0and yigiy= 0 for all ) {;(x,, y} does not depend on x; at all: Thus, in
this rare casc,-any x; between oy and f; minimizes [;(x;, y). :

From now on, we may thus assume that at least one of Poj+¥'pjorge; +y'g s strictly positive.
Then the derivative of I;(x;;y) with respect to x; is given by '

Po; + yij _ ot YT‘L'

Pix,,y) = 15

N (T ey @
and the second derivative of li(x;, y) with respect to x; is given by

- 2po; +¥" 2(go;+¥'g;

(U;—x) (x;— Ly)?

Since I7(x;,y) is strictly positive, the derivative Fi(x;,y) is strictly inéreasing in x;, and we may
draw the following conclusions concerning the minimizing x; in (14} (denoted by x{y)):
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L If Lo, ¥) > O then x;(y) = o; (an
2. I K(B;,y) <O then x,(y) = B (18)
3. I (e, ¥) < O and I3{B;,y) > 0 then x,(y} is the unique solution of the equation F(x;,y) =0
It is easy to verify that this unique solution is given by
(po; + yij)%lzLj +(go; + Y @)U,
(po; + ¥ + (go; + quj)uz
Now, since there is an explicit expression for x;(y), the minimizing x,in (14), there is also an explicit
expression for the dual objective function W(y), namely .

' Po; YD, 405+ L
W(y)=ro—y'b+ ( z 1 20 : - (20)
@=ro-y+ 3 o  xm-1,)
Furthermore, the derivatives of W(y), with respect-to the dual variables y,, are given by:

aW . qi; N
i 2( U o) &m—L) 2l

The dual problem corresponding to P% is the problem of maximizing W(y) over the set of all
ysuchthaty>0(1e y; =0 for all i). :
D: maximize

x;(y) = (19)

W(y) subjectto y=0

Since x,(y) depends contmuously on y (except in the rare case that Po;+Y'B;=do; + ¥'q;=0),
it follows from (21) that W(y) is a *smooth’ function. It is also easy to prove that W(y) is a
concave function (since it is the pointwise minimum of a collection of functions which are linear
in y).

D is therefore a rather ‘nice’ problem, which may be solved by an arbitrary gradient method.
We have developed a Fortran subroutine based on a copjugate gradient method, the
Fietcher-Reeves method, slightly modified to take care of the non-negativity constraints on the
(dual) variables. Apparently, this routine easily solves dual problems containing several hundreds
of (dual) variables.

Once the dual problem has been solved, the optimal solution of the (primal) subproblem p®

is directly obtained by just plugging in the optimal dual solution y in the expressions for x(y)
above.

-5. . ARTIFICIAL VARIABLES

It may happen in particular durmg the first 1terat10ns if the starting point x¥ is badly’ chosen,'
that a subproblem P® becomes infeasible, i.e. without any feasible solutions. Tn that case, one
would stiil like to obtain a reasonable next iteration point x** 1, typically a point which is (in
some sense) ‘as close to feasible as possible’ to P®.

In order to accomplish this, it is suggcsted that each subproblem P® is modified by the
introduction of ‘artificial variables’ z,,i = 1,...,m, so that the subproblem instead looks as follows
(using similar notatlon as in sectlon 4}

P®: minimize

Z( Po; 9oj )+ z(éziz,-+-d,-zi2)+‘rro
A x-—L =1

j j
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subject to

5"_:( Dij 9ij )
AN —zish, for i=1,....m
AN\ —x - L :

and A )
;<x;<fy for j=1,...,n and 2,20, for i=1,...,m

where p; >0, ¢;; 2 0, Ly<o;<f;< Uy and d; > 0. Each &, should be a ‘relatively large’ fixed real
number. Obviously, there are always feasible solutions of this problem. (For any x it is possible
to choose z such that the constraints become satisfied)) o '

It is easy to prove that if the coefficients d; are sufficiently large, then all the artificial variables
2; will automatically become zero in the optimal solution of P®, provided that the unmodified
subproblem P® (of section 4) is feasible.

On the other hand, if the unmodified subproblem P™® is infeasible, then some of the z; will
be strictly positive in the optimal solution of P®. However, because of. the high ‘cost’ of these
variables, they will not be greater than absolutely necessary. Therefore, the corresponding
x-solution is in some sense as close as possible to being feasible to the unmodified problem P®,

It should be noted that the dual method described in section 4 may still be used, after some
trivial modifications, to solve this new subproblem  P®. In fact, since the number of dual
variables y; is still equal to m, the dual problem of P® js not (significantly) harder to solve
than the dual problem of P%, o

Concerning the question of how to choose values for the coefficients d;, it is theoretically
sufficient to choose them ‘very large’ compared to the other coefficients in the objective function.
In practice, however, one should probably not choose them unnecessarily large (e.g 10%9), since
this in some cases might cause numerical difficulties. It is rather easy, however, to calculate
rough estimates of reasonable values on each 4;. Then one might let d, be equal to such an
estimate multiplied by, say, 10 or 100.

6. NUMERICAL TEST RESULTS

MMA (the method of moving asymptotes) has ben coded in Fortran 77 and tested on different
problems. 7 4 7 _

In this section we will report on some (spectacular) results obtained on three different test
probleéms. Even if these problems are purely ‘académic’, we believe that the obtained fesults give
some insight into the nature of MMA, in particular they indicate a strong potentiality of the
method.

(The method has also been implemented at the Aircraft Division of SAAB-SCANIA and tested
on some large scale problems containing thickness variables, geometric variables, angular
orientation variables, stress constraints, displacement constrainis and cigenfrequency constraints,
The obtained results have been very satisfactory, but we are not yet ready to present the details
concerning these tests.) ‘ -

Test problem 1: cantilever beam

Consider a cantilever beam, built from 5 beam elernents as shown in Figure 1. Each beam
element has a quadratic cross-section as shown in Figure 1. o

The beam is rigidly supported at node 1, and there is a given external vertical force acting at
node 6 (see Figure 1). '
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tNode | Node 2- - Node3: WNode 4 MNode5 Node6.
/ / / L)/

ARG

Given thickness

.xf
Figute 1. Cantilever beam (test problem 1)

The design variables are the heights x; of the different beam elements, and the thicknesses are
held fixed. '

The objective function, to be minimized, is the weight of the beam.

There is only one behaviour constraint, namely a given limit on the vertical displacement of
node 6 (where the given load is acting).

The lower bounds on the design variables are so small, and the upper bounds are so large,
that they never become active in this problem.

Using classical beam theory, this problem may in fact be stated analytically as follows (after
some cleaning):

P1: minimize ,

to Cilxg+ %3+ X3+ %, +x%5), x;>0
subject to
61/x3 +37/x3+19/x3+7/x3+ 1/x3 < C,

where C; and C, are constants whose values depend on material properties, the magnitude of
the given load, etc. In our case, it turned out that C, =00624 and C, =10.
P1 may ecasily be solved analytically. If C, = 1-0, the optimal solution is

%, = 6016, %, = 5309, x5 = 4494, x, = 3-502, %5 = 2:153 (22)

If, in addition, C, = 0:0624, the corresponding optimal objective value is 1-340.

As a starting point in our tests, we used the feasible solution x{” = 50 for all j. Then the
displacement constraint becomes satisfied with equality, and the total weight of this solution is
1-560.

In order to illuminate how the moving asymptotes influence the behaviour of the method, we
used the following simple rule for choosing values of L{? and U{®:

LP =P, UP=xP/ (23)

where the parameter t must be chosen strictly between 0 and 1.
Several runs, with different values for the parameter ¢, have been performed. In particular,
the following values were compared:

t=1/16,t =1/8,t = 1/4,t =1/3,t =1/2,t = 2{3,t = 3/4.

A ‘traditional’ method was also included in the tests, namely the method of Reference 2 which,
on this problem, coincides with the method of Reference 1. In fact, this method exactly corresponds
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to the limit case ¢ =0 in (23) above. (L{ =0 and U — o0)
The meve limits «f* and B¥ were, in all runs, chosen according to the following simple rule:
o =max{0-5x{, 101LP}
B =min{20x¥, 099 UW)

For the ‘traditional’ method this means o = 0-5x% and B = 2:0xP,
The results of the different runs (with different values for 1), are shown in Table I Each iteration

24

Table I. Results for test. problem 1, ‘cantilever beam’”. The upper entty of each pair is the weight and the
second is the infeasibility

‘Traditional’ MMA MMA MMA MMA MMA MMA MMA

Iteration method with with with with with with with
number (t=0) t=1/16 =18 t=1f4 1=1/3 =12 =23 (=3/4
0 1-560 1-560 1-560 1-560 1-560 1-560 1-560 1-560

o000 - 0000 0-000 0-000 0-000 0000 0-000 0-000
1 1-265 1-274 1-285 1:309 . 1-327 1-387 - 1-448 1-477
0-40 035 023 010 0-05 0-000 0-000 0000
2 1-251 1-270 1-307 1-335 1-338 1346 1386 1418
o 043 027 011 0-01 0-004 0-000 G000 0000
3 1:259 1-304 1-331 1-340 1-340 1-341 1-358 -1-383
043 ) 014 003 0-0005 0-0001 0-000 0-000 0-000
4 1-250 1-319 1-337 1-347 1363
044 008 0008 0-G00 0-000
5 - 1-258 1329 1-339 1-343 1352
043 004 0-002 0-000 0000
6 1-249 1-333 1-340 ) 1341 1-346
044 0-02 0-001 0-000 . 0-000
7 1-258 1-336 1-343
0-43 001 ) 0000
8 ) ) 1342
T . o 0-000
9 R - _ o 1:341
. - . 0-000
1 1259 1340
0-42 0-002
12 1-250 1-340
0-44 0001
13 1-259

0-42
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point x® is represented by two numbers: its objective value (welght) I (x(’") and its ‘infeasibility’,
defined as follows:

Infeas(x“") max {0, max [( fi(x(“)) fl)/ f,]} | -{25)

with notations as in section 2. Clearly, x(’" isa feas1ble solutlon of the ongmai problem P {defined
in section 2) if and only if Infeas (x*) =

The termination criterion used for this problem is the followmg the pl‘OUESS is termmated ‘and
the current iteration point x® is accepted as a sufficiently close: to optimal solution, as soon as
infeas (x®) < G-001 and f(x®) < 1-001f*, where f* is the (known) minimal weight, in our case
1-340.

The obtained results, shown in Table I, are somewhat remarkable. The ‘traditional’ method did
not convergeé at all (1) whereas for all tested values of £{1/16 <t < 3/4) MMA converged to the
optimal solution given by (22).

What happened to the ‘traditional’ method was that, after some iterations, the process oscillated
between mainly two different solutions, both being highly infeasible and non-optimal, so that
X xM i x® . and x™ 2 x©® ~ x®,, .ete. This behaviour was efficiently stabilized by using
MMA with a strictly positive ¢ in (23). ' 7

The ‘best’ values of ¢ (for this specific problem!) were those between 1/4 and 1/2. With these values
of t the convergence was remarkably fast, only 3 iterations were needed. When ¢ > 1/2 the method
became somewhat ‘too conservative’, whereas the opposite was the case when ¢ < 1/4. However,
even for t = 1/8 and ¢ =2/3 only 6 iterations were needed.

Test problem 2:8-bar truss

Next, consider a 51mple truss ‘structure contalmng 8 elements (bars) shown in Figure 2.

Topology
. : Element . Node
7 v number numbers
2 . ) _
1 15
2 2 5
3 3 35
6 4 4 5
5 6 5
b 4 6 75
L 1 7 8 5
x 9 8 9 5
Geqmetry
Node ' Node
number co-ordinates ()
1 —250 —250 0
2 —250 250 0
3 250 250 0
4 250 250 0
3 0 0 375
6 —375 0 0
7 0 375 0
8 1(2) 9(7) 4(3) 8 g 375 0 g

0 375

Figure 2. Eight-bar truss (test problem 2)
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There. is .only one single load case: an external force F = (F.,F,,F,)at the.unsupported node
(node 5. F, = 40kN, F, = 20kN, F, = 200kN. . :
The design variables are the cross-sectional areas of the elements. There is no design variable
linking. Thus, x; 15 the cross-sectional area of the Jjth bar, o
The lower bounds x jon the design variables are 100 mm?2 for all J>and the upper bounds % ;are so
large that they never become active on this problem. .
The objective function, to be minimized, is the weight.of the considered structure,
- The only behaviour constraints are stress constraints:the stress (tensile or compressive} must not
be greater than 100 N/mm? in any element under the considered load case. : .
The following rule is used for choosing values. of the asymptotes:

(@) ifk=0ork=1, then L¥ =0 and UP =5x® for all j. , :
(b) if k=2, the rule deséribed at the end of section 3 is applied, i.e. the rule defined by the

formulae (12) and (13).

To prevent possible numerical difficulties due to the ‘running away’ of the ‘asymptotes, it is also
required that -~ ... - R Lo ST o
' — 50 <LP < 04x®" and 25xPLUP g S0x$ -
The move limits are simpiy chosen as foliow: . . .. .

; o a}k} =0,5-x§_k) and ﬁ}k)‘_‘___-'g;()'x“gk) :
As a starting point, we let x{” = 400 mm? for all j, . - ,

Several runs have been performed, with different values of the parameter s in the formulae (12)
and (13). In our tests, we also included the ‘traditional’ method of Reference 1 (ie. linearizing the
stress constraints in reciprocal design variables. '

- It turned out that on this specific problgzm,,the ‘traditional’ method {corresponding to.L¥ = Q) is
much too ‘conservative’, thereby seriously slowing down the cotvergence.

When MMA was applied it turned out that, after some iterations, L¥ and U® moved away from
x{, for allj. Very soon, ali the L¥ became very negative! It should be noted that the lower the value
of the parameter s, the faster could L# and U® move away from x$ (see (13)), the more negative
become each L%, the larger become each U, and the less conservative become the
approximations. :

The results from the different runs are given in Table IL The starting solution x®was infeasible,
but after that, all solutions x™®, in all runs, were feasible. Therefore, each iteration point is, in
Table II, represented only by its weight.

The optimal sclution, obtained in all the runs, turned out to be (approximately) the following:

x;=880mm? x,=720mm>? x, =260 mm?, x,=520mm?
X5 =100mm? x;=100mm? x,=100mm? xg = 100 mm?

On this specific- problem, it turned out that a non-comservative strategy, compared to the
‘traditional’ method, is preferable. This probiem is therefore in some respect “the opposite’ of the
previous problem (the.beam), where. the ‘traditional’ method turned out to be much too non-
conservative,

Test problem 3: 2-bar truss

Next, consider the simple 2-bar truss in Figure 3, containing one element sizing variable (x,) and
one configuration variable (x,). : .
There is one load case: an external force F = (Fy, F,) at the unsupported node {node 3), where



THE METHOD OF MOVING ASYMPTOTES 371

Table II. Results {in kg) for test problem-2, ‘8-bar.truss’

MMA MMA . -

) MMA
Tteration - ‘Traditional’ with . - with with. .
number method s=3/4 s=1/2 s=1/4
0 13-05 1305 1305 1305
1 w1168 1210~ 1210 . 12:10
2 -11-66 11-67 11-67 11-67
3 1164 1165 1165 11-65
4 "11-62 1164 11-63 11-61
5 11-60 11-62 11-60 11-52
6 11-59 11-60 11-53 11-42
7 11-57 11-56 11-44 11-28
8 11-55 11-52 11-35 11-23
9 ~11-53 11-47 .- 11-25
10 11-52 11-41 - 11-23
11 11-50 1136
12 11-48 1131
13 ©:11-46 1124
14 11-45 1123 .
15 11-43 :
i6 1142
17 11-40Q
18 1139
19 1137
20 : 11-36
30 11-27
39 11-23
Topology
Element Node
number numbers
1 1 3
2 2 3
1.0 Geometry
Node Node
number co-ordinates(m)
o * 3 =%, 00
2 z 2 x; 00
Figure 3. Two-bar truss (test problem 3) 3 00 10
F_.=248kN andF =198-4kN. (F =8F, and iF|=200kN.)

There are two demgn variables: x,, the cross-sectional area (cmz) of the bars and X4, half of the

distance {(m) between the two nodes 1 and 2.

The lower bounds on the variables are 0-2 cm? and 0-1 m, respectlvely The upper bounds on the
variables are 40cm? and 1-6m, respectwc]y None of these four bounds becomes active at ‘the

optimal solution.

The objective function, to be minimized, is the welght of the bars,
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Table 111, Results for test problem 3, 2-bar truss’

Iteration - Reference MMA (without
number SLp 2 ‘MMA  move limits)
0 % 180 150 150 1:50
o x, : 050 050 0-50 0-50
a D092 . 092 092 092
w 168 168 168 168
1 Xy : 138 1-39 1:39 139
X, : 025 . 025 0:25 010
ay R 1-11 - 1110 1-62
w 142 1-43 1-43 1-40
2 Xt 14 133 122 063
X, o050 - 050 0-50 062
oy D122 104 1-13 223
w : o127 149 137 074
3 Xy 1 134 139 1-39 1-45
Xy ;025 0-25 0-25 010
¢, ;114 1-11 1-10 1-54
w : 138 143 1-44 1-46
4 X : 115 133 137 104
PO 0-50 0-38 034
o, : 121 104 1:03 1-38
w . 128 1:49 147 110
5 Xy i 134 1-3% 1-41 1-42
Xq : 025 025 038 040
o © 114 111 100 099
w : 138 1-43 1-51 1-53
6 X, o U5 133 141
X, : 050 0-50 038
oy 121 1-04 100
w : 128 1-49 151
7 xy 134 1-39
X, T 025 025
"o, . 114 111

w ;138 1-43

The (tensile) stress must not be greater than 100 N/mm? in either of the two bars; under the
considered load case.
Again, this small problem may be formulated analytically (but this is of course not necessary for
the method to work!) as follows: ' : :
. minimize :
w(xy, %) = Cyx; /(1 +x)
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subject to
8 1
= | — <1 rl
o3 (x, %) = Caa/(1 +x3) (x1 + xﬁ‘-z) (bar 1)
and
8 1
0'2(X1,x2) = Cz\/(l + ?C%)(—)—C-;—xlxz ) =1 (bar 2)

02<x;, <40, 0l€x, 516

where C, =1-0 and C, =0-124.

It is obvious from this formulation that the second constraint (i.e. the stress constraint in bar 2)
will never become active, since the stress in bar 1 is always strictly greater than the stress in bar 2.

A feasible starting point was chosen, namely x; =1'5 cm? and x, =0-5m, with w=1-677 and
g, = 0925, :

In MMA, the asymptotes for the sizing variable x, were chosen according to the simple
formula (23) with £ = 0-2, whereas the asymptotes for the configuration variable x, were chosen
according to (11), (12) and (13) with s=0-5 in (12) and s =075 in (13).

Two other methods were also tried in the tests: SLP {(sequence of linear programmes), which
corresponds to L;— — co and U;—> + o, and the method of Reference 2, which corresponds to
L;=0and U;— + c0. ]

In all the three methods, move limits given by o = x{/2 and g = 2x{ were used.

The results of the tests are shown in Table II1. On this problem, neither SLP nor the method of
Reference 2 converged. MMA, however, did converge to the optimal solution in about 5 iterations,
MMA was also tried without the move limits mentioned above, and it still converged nicely, now in
about 6 iterations (the last column in Table III).

7. CONCLUSIONS

We do not claim that the resuits obtained on the test problems in the previous section are typical in
general. On many problems, the method of Reference 2 is known to work very well (t.e. the choice
L;=0and U;= co works very well).

However, we believe that the obtained results clearly illuminate the importance of the flexibility
of MMA, which gives the user some control of the convergence properties of the overall
optimization process. -
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