Practice problems for ME 256

1. Find the extremizing function for the functional $J=\int_{x_{1}}^{x_{2}}\left(y^{\prime 2}+2 y y^{\prime}-16 y^{2}\right) d x$ and then find another functional that has the same E-L equation as the one you found. Trivial multiplication or addition by a constant is not permitted in creating a new functional.
2. For which functional, $y=\frac{x^{7}}{7!}+\sum_{i=0}^{5} c_{i} x^{i}$ is an extremizing function?
3. Find an integrand functional $J=\int_{x_{1}}^{x_{2}} F\left(y, z, y^{\prime}, z^{\prime}\right) d x$ for which $y=(a x+b) \cos x+(c x+d) \sin x$ and $z=2 y+y^{\prime \prime}$ are the extremizing pair of functions.
4. Find the extremizing functions for the isoperimetric problem given below.

Minimize $J=\int_{0}^{1}\left(y^{\prime 2}+z^{\prime 2}-4 x z^{\prime}-4 z\right) d x$
subject to

$$
\begin{aligned}
& \int_{0}^{1}\left(y^{\prime 2}-x y^{\prime}-z^{\prime 2}\right) d x=2 \\
& y(0)=0, z(0)=0, y(1)=1, z(1)=1 .
\end{aligned}
$$

5. It is desired that the absolute axial displacement of an axially loaded bar be less than Δ^{*}. Formulate an optimization problem and write the necessary conditions so as to minimize the volume of the bar.
