
Background to the problem 
 
         Normal topology optimization method requires division of the domain into a fine 
number of grids and then based on the objective function and constraints successive 
elimination of the members of this grid is done to arrive at an optimal topology defining 
the shape of the structure.  So the geometry of the final structure consists of a large 
number of elements. I was interested in what way the topology and shape of the final 
structure can be arrived at using a small number of elements. This project aims at solving 
a problem using the wide curve theory in which a minimum number of grid has been 
considered. 
 
Statement of the problem 
 
          For a given load and a given amount of material  design the stiffest hook (the hook 
has to be sufficiently large to support the member ( a rope or a chain) through which the 
load is applied. 
 
Minimize: (SE) with respect to design variables. 
Data: a given mass of a specified material. 
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Constraints : 
 
               No part of the hook can be within the blue shaded region which is kept for the 
device thru which load is applied and it has to be within the square box of side L which is 
the domain of the problem.  
 
Theoretical solution: 
  
               I don’t think that the topology of the hook can be solved analytically. However 
if the topology is selected ( for e.g. a semicircle) then the shape of the beam may be tried 
to be derived. I am taking a semi-circular beam 
 

  
  
The above figure shows a semi-circular beam (never mind the drawing , that’s all I could 
make ) 

P+Py 

Px 



2 2

0 0

2 2

0 0

0

( ) sin (1 cos )

( )sin cos

/(2 ) /(2 )

{( ) sin (1 cos )} /(2 ) {( )sin cos } /(2 )

/ {( ) sin (1 cos )} /( ) {( )

y x

y x

y x y x

y y x y

M P P R P R

F P P P

SE M EI Rd F EA Rd

P P R P R Rd EI P P P Rd EA

SE P P P R P R Rd EI P P

π π

π π

π

θ θ

θ θ

θ θ

θ θ θ θ θ θ

θ θ θ

= + + −

= + −

= +

= + + − + + −

∂ ∂ = + + − + +

∫ ∫

∫ ∫

∫
0

sin cos } /( )xP Rd EA
π

θ θ θ−∫

Now substituting Py = 0 & Px = 0 
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Now the mean compliance can be written as 
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Now the Lagrangian may be written as  
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From this Λ can be solved by putting back in the constraint equation. However, by this 
analysis Area comes out to be uniform. 
 
Numerical approach: 
                
              Before talking about the constraints, design and state variables I would like to 
present the formulae used in wide curve theory.  
 



 
A cubic wide Bezier curve 
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Here ( )cx t , ( )cy t is the centre line of the wide Bezier curve which is the regular Bezier 
curve with control points {( ixC , iyC ) , i = 0,1,..m}. parameter t lies between 0 & 1.The 
wide Bezier curve is fully controlled by the set of circles { 0 1, .. mC C C } located at centers 
( ixC , iyC ) with diameters idC . 
  In this problem I am taking 2 Bezier curves as shown below. 
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None of the curves should enter the blue shaded region (which is the nook of the hook).  
i.e. 
  

ixC + idC /2  > x1---------------(1) 

iyC + idC /2 < y1---------------(2) 

iyC + idC /2 > y2---------------(3) 

ixC + idC /2  < L---------------(4) 

ixC - idC /2  > x1---------------(5) 

iyC + idC /2 < L---------------(6) 

iyC - idC /2 > 0---------------(7) 
Constraints on the wide curve: 
A wide Bezier curve may be considered as the trace of moving a variable circle along the 
center Bezier curve. When the radius of curvature of the center Bezier curve is smaller 
than the radius of the moving circle, self-intersection of the wide curve occurs. This can 
be avoided by imposing additional constraint as follows: 
GCC = Max [0.5 ( )cw t  - ( )c tρ ] 
where,     
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However, self intersection can still occur if the center Bezier curve crosses itself and 
creates a loop. This kind of self-intersection of wide curves can be avoided by the 
following inequality condition: 
 
GCL = (m – 4/3)(n – 4/3) - 4/9 < 0 where m and n are given by  
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where, C1, C2, C3, C4, are the centers of the circles and Q is the point of self-intersection of 
the wide curve.  
The above 2 types of constraints when considered in my case will introduce 4 new 
constraints namely, 
GCCelement1 < 0---------------(8) 
GCCelement2 < 0---------------(9) 
GCLelement1 < 0---------------(10) 
GCLelement2 < 0---------------(11) 
1 additional constraint need to be specified so that the curves don’t cross each other.  
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The volume constraint is given by: 
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where b = depth of the beam (I will assume it to be unity) 
Equations (1) to (13) give the set of constraints for this problem.  
C1 is fixed. The set of design variables are  
X = [C1d C2d  C2x  C2y C3d C3x C3y C4d  C4x C4y C5d
 C5x C5y C6d C6x C6y C7d C7x C7y]  
Using suitable shape functions The Tangent stiffness matrix [K]T is formed. (This I will 
develop) Then  
                             [K]T{u} = {F} 
are solved to get {u} (the displacements).  
Now, 
          SE = {u}T[K]T{u}/2 
This is used as the minimizing function in fmincon optimization program of MATLAB. 
 
   
  


