Sufficiency condition for a constrained minimum

The first order Taylor series expansion of the objective function and the equality constraints
gives:
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Since dh =0 in order to satisfy feasibility, we get from the second of Eq. (1):
Ss=-[V.n' ] v h'sd @)
The substitution of s of Eq. (2) into the first of Eq. (1) yields:
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The last line of Eq. (3) uses a different notation to show the gradients for the convenience of
further manipulations. Note that this change of notation also changes the way Eq. (2) is
written, which is shown below.
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We now interpret 5/ as another “reduced function” &z wherein z depends only on

independent (or decision) variables d . From the last line of Eq. (3), the “reduced gradient” is
given by
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Minimization of z is unconstrained. So, the sufficient condition is that its Hessian is positive
definite. In the new notation we adopted, the Hessian can be written as
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It can be expanded using the chain rule as follows.
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The above expression can be re-arranged compactly as shown below.
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Similarly, the Hessian of the constraints can be written as
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For feasibility, even this second derivative (Hessian) of the constraints must be zero. This

enables us to solve for the only unknown quantity in Egs. (6') and (7), viz., ddz .
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By substituting ;’Tzi from Eq. (8) into Eq. (6'), we get
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Noting that
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Eq. (9) can be re-written as
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As we noted earlier, for sufficiency of the minimum of z, we need positive definiteness of

d’z
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By expanding = using Eq. (9') and using (%j o6d =0s in Eq. (10), we arrive at the

dZ

following result.
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From the definition of the Lagrangian (the second of Eq. (10), we can see that Eq. (12) is the
same as
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Noting that 5x” :lié'dT os’ J and that the dependent (or solution) variable part has to

saitisfy the feasibility condition, we can re-write Eq. (14) in an enhanced form as

Y
2
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It is important to note that the above condition is less demanding on requiring the Hessian of
the Lagrangian to be positive definite.
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