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Freeform Skeletal Shape
Optimization of Compliant
Mechanisms
Compliant mechanisms are elastic continua used to transmit or transform force
motion mechanically. The topology optimization methods developed for compliant m
nisms also give the shape for a chosen parameterization of the design domain with a
mesh. However, in these methods, the shapes of the flexible segments in the re
optimal solutions are restricted either by the type or the resolution of the design pa
eterization. This limitation is overcome in this paper by focusing on optimizing the s
etal shape of the compliant segments in a given topology. It is accomplished by ident
such segments in the topology and representing them using Bezier curves. The ver
the Bezier control polygon are used to parameterize the shape-design space. Un
parameter steps of the Bezier curves naturally enable adaptive finite element discr
tion of the segments as their shapes change. Practical constraints such as avo
intersections with other segments, self-intersections, and restrictions on the ava
space and material, are incorporated into the formulation. A multi-criteria function fr
our prior work is used as the objective. Analytical sensitivity analysis for the objec
and constraints is presented and is used in the numerical optimization. Example
included to illustrate the shape optimization method.@DOI: 10.1115/1.1563634#
a

t

t

c

r

c
a

s

t
-

,

u
T

t

ual
to

sign
lled
ing
ere

tion
tion
the

ig-
for
nce
al-
ical
dels
that
and

the
ing
ual

n-
-
used
to

s or
ave
t al.

e
-
und
sing
and

the
2

1 Introduction
Fully compliant mechanisms are elastic continua that are u

to transmit or transform force and motion mechanically. The
vantages of these mechanisms over rigid-body mechanisms
due to the absence of rigid-body kinematic joints. Some of
many advantages are less friction and wear@1#, ease of manufac-
turing without assembly@2#, provision for nonmechanical actua
tion @3#, etc. Compliant mechanisms are used in product des
~e.g.,@4–7#!, offshore structures@8#, smart structures@9#, Micro-
Electro-Mechanical Systems@10#, and minimally invasive surgery
@11#, etc. The systematic design of compliant mechanisms
received significant attention in the last decade resulting in
categories of methods. In the first category, rigid-body mechan
techniques are utilized@1,12,13# and in the second category stru
tural optimization methods are suitably enhanced@14#. Since the
subject matter of this paper is concerned with the latter catego
brief overview of those methods is provided below.

As in the design of any mechanical device, the first step in
design of compliant mechanisms is the generation of the con
where creativity and prior experience usually play a signific
role. Since a fully compliant mechanism is a single entity of
elastic material continuum, the concept generation here entail
determination of the geometrical form of this continuum. Thr
levels of hierarchy are identified in the literature to describe
geometry:topology, shape, andsize. Topology refers to the num
ber of holes in the continuum and how different regions of inter
~input/output ports and fixed portion! are connected to each othe
Thus, a topology identifies a finite number of segments that
interconnected with each other. Once a topology is selected
shapes of the individual segments need to be determined.
shape can either be the boundary shape of a 2-D or 3-D contin
or the skeletal shape of frame-like compliant mechanisms.
two types are schematically illustrated in Fig. 1. In bounda
shape optimization, the shapes of the holes and/or the exte
boundary are varied. On the other hand, in skeletal shape op
zation the shapes of the medial-axes of the segments are va
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The focus of this paper is on the skeletal shapes of individ
compliant segments in a given topology. Finally, the size refers
the dimensions~thickness, width, etc.! that completely determine
the physical form with a chosen topology and shape. The de
methods developed for compliant mechanisms, although ca
the topology optimization methods, are capable of determin
not only the topology but also the shape and size. However, th
are some limitations to this approach as explained next.

1.1 Background and Motivation. The principal feature of
the topology optimization methods is its design parameteriza
over a fixed reference design domain. Design parameteriza
refers to the set of variables that enable smooth variation of
geometrical form of the continuum and allow for large and s
nificant variations in design. Smooth variation is necessary
gradient-based optimization methods. The phrase ‘‘fixed refere
domain’’ implies that the geometric domain of interest is not
tered during the iterative process of optimization. In the numer
implementation, when discretized finite element meshed-mo
are used, this simply means that the mesh is fixed implying
nodes are neither added/subtracted nor their connectivities
coordinates altered in any way. In this setting, variation of
geometrical form is accomplished in two ways. One is by alter
the properties of a ‘‘composite material’’ composed of the act
material and void by way of thehomogenization method@15# or
simply by multiplying the material properties with a fictitious de
sity function @16#. This is applicable when continuum finite ele
ments, such as the plane-stress elements in the 2-D case, are
in the implementation. The other way is to assign a variable
each element in the mesh. If aground structureof truss or frame
elements is used, such a variable could simply be the thicknes
the width of the rectangular cross-section. Both approaches h
been adapted for compliant mechanisms. Ananthasuresh e
@14#, Sigmund@17#, Nishiwaki et al.@18# and others have used th
continuum elements; and Frecker et al.@19#, Saxena and Anantha
suresh@20#, and others have used the frame element-based gro
structure approach. Figure 2 shows three examples solved u
both the methods where, in addition to the topology, the shape
size are also determined simultaneously.

As can be seen in Fig. 2, in both methods, the shapes of
.
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flexible segments are restricted either by the type or the resolu
of the design parameterization. If truss or frame elements are
~Figs. 2~a!, 2~c!, 2~e!!, the shapes of the compliant segments
restricted to a finite number of slopes. If continuum elements
used~in this 2-D case, plane-stress elements! flexural pivotsoften
appear~Figs. 2~b!, 2~d!, 2~f!!. A flexural pivot is the location
where two square plane-stress elements meet diagonally at a
or otherwise create a short and very thin segment connecting
relatively more rigid segments. In practice, this needs to be
placed with a longer flexural segment to avoid stress concen
tion and improve manufacturability@21#. Such flexural pivots do
not take advantage of the distributed compliance~which is ben-
eficial from the viewpoint of strength considerations! of a compli-
ant segment. Furthermore, in order to obtain smooth shape
either method, a very high resolution of the mesh is required. T
increases the problem size. Thus, both methods are restrictiv
terms of the shapes that they generate. To overcome this lim
tion, this paper focuses on optimizing the skeletal shape of
flexible segments in compliant mechanisms. This implies tha
topology is necessary to begin the process of shape optimiza
In this regard, the procedure outlined in this paper can be tho
of as a second stage of optimization to further improve the p
formance of a compliant mechanism.

1.2 Organization of the Paper. In Section 2, related work
on shape optimization of structures and compliant mechanism
described. The statement of the shape optimization problem
outlined in Section 3 by presenting the design parameteriza
using Bezier curves, the objective function, and the constrai
Section 4 has sensitivity analysis and details of the solution p
cedure. Section 5 has two examples. The paper is concluded
some remarks in Section 6.

2 Related Work on Shape Optimization
There are different interpretations of shape optimization in

literature. For example, the procedure to obtain an optimum to
logical layout of a structure using frame elements has been ca
shape optimization of skeletal structures@22#. Most recent re-
searchers focused on investigating the optimal shape of

Fig. 1 Two types of shape optimization „a… optimizing the
boundary shapes of holes „b… optimizing the skeletal curves of
the segments. Both are capable of generating the same struc-
ture if the width of the segments is varied along with the curves
in the latter.
254 Õ Vol. 125, JUNE 2003
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boundaries of 2-D and 3-D structures. A lot of innovative metho
have been investigated. A good review of shape optimization
be found in @23#. According to the object that is modified, th
shape optimization methodology can be categorized as: entire
main based method that uses the finite element models; boun
surface based method that uses the boundary element method
a boundary contour method. When a finite element model is u
for shape optimization, it is necessary to discretize the whole
sign domain each time during the iterative process, while
boundary element-based method only requires the discretiza
of the boundary surface. The boundary contour method offer
further reduction in dimensions@24,25#. These are all gradient-
based methods, where the function gradients are essential fo
optimization techniques such as Sequential Quadratic Progr
ming ~SQP! method. On the other hand, techniques other th
mathematical programming such as the genetic algorithms h
also been applied to shape optimization. Some recent works
shape optimization that use genetic algorithms are describe
@26# and @27#.

From the perspective of the geometric model, or more spec
cally, the selection of the design variables, there are many
proaches in the literature. Zienkiewicz and Campbell@28# defined
the nodal coordinates of the finite element model as the des
variables, which make the optimization task very difficult as ar
trary changes in the nodal coordinates could lead to impro
topologies and shapes. In some other approaches, a set of

Fig. 2 Optimal topologies for compliant mechanisms using
frame ground structure method „2a,2c ,2e… and continuum ele-
ment method „2b ,2d ,2 f …. The shapes of compliant segments
in the ground structure designs have a limited number of
slopes, and the continuum designs mostly rely upon flexural
pivots.
Transactions of the ASME
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points or master nodes is used to define the geometry en
@29,30#. And recently the parametric and feature based CAD g
metric modeling is becoming a powerful tool in shape optimiz
tion where some key dimensions are used to control the shap
describing the location of the control points. The connection
tween CAD and CAE makes it an easier task to carry out the F
on the geometric model based on the CAD models.

In the compliant mechanisms literature, although there are
merous papers on topology optimization, the shape optimiza
has received very little attention. Hetrick and Kota@31# varied the
coordinates of a few master nodes in a finite element model c
sisting of frame elements within a range in order to vary
shape. In the present paper, the shapes of the compliant segm
in a given topology are allowed to vary freely in order to find t
bestfreeformshape.

3 Problem Statement
The segment-wise, freeform shape optimization problem

compliant mechanisms is presented in this section. The de
variables, the objective function, and the constraints are descr
in that order.

3.1 Design Parameterization. The primary criterion for
choosing the design variables is that they cause smooth varia
in the shape of a compliant segment. This will ensure that de
derivatives can be easily computed for gradient-based optim
tion methods. The number of variables should be small eno
but should be able to cover a large design space of shapes.Bezier
curvessatisfy both the requirements and are widely used in m
eling curves. They are also simpler to use when compared to m
sophisticated B-splines. A cubic Bezier curve in its parame
form is given by

P~ t !5@B0~ t ! B1~ t ! B2~ t ! B3~ t !# @Q0 Q1 Q2 Q3#
T

(1)

where P(t) contains thex and y coordinates of a point on the
curve corresponding to the parametert which takes values from 0
to 1 from one end of the curve to the other end;B’s are cubic
Bernstein’s basis functions given by

B0~ t !5~12t !3

B1~ t !53~12t !2t
B2~ t !53~12t !t2

B3~ t !5t3
J (2)

andQ’s are thex and y coordinates of four points that form th
Bezier control polygon. Figure 3 shows the control polygon an
the Bezier curve. By moving the control points, a wide variety
cubic curves that span a large design space of shapes ca

Fig. 3 Bezier control polygon and the corresponding curve
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obtained. It is then natural to use the coordinates of the con
points as the design variables in shape optimization. One of
many interesting properties of the Bezier curves is that the cu
always lies inside the convex hull of the control polygon. This
attractive from the viewpoint of applying constraints to restrict t
curves to prescribed geometric domain. Another attractive pr
erty overcomes the need for re-meshing after every iterat
which is one of the main difficulties in most other shape optim
zation methods. This is because the points on the Bezier curve
be directly used as nodes in the finite element beam model.
thermore, if uniform parameterization int is used~i.e., from point
to point, Dt is constant!, the points on the curve are distribute
such that more points~and therefore nodes! appear in the regions
of large curvature. This can be explained as follows. The cur
ture c of a parametric curveP can be expressed as

c5
uṖ3P̈u

ṡ3 (3)

whereṖ andP̈ are the first and second order derivatives ofP with
respect to the parametert respectively~the cross product of them
is a polynomial of parametert), and ṡ is the derivative of curve
length with respect to the parametert, i.e.,

ṡ[
ds

dt
'

Ds

Dt
(4)

Equations~3! and ~4! indicate that the curvature is going to b
larger whenDs is small for fixedDt. In other words, for the
region where the curvature is large, more nodes are going to
created which is desirable in a finite element model that u
two-noded beam elements. This is clearly evident in Fig. 3. Th
an adaptive mesh is naturally created with uniform parameter
tion in t. Bezier curves are also amenable for analytical sensitiv
analysis as explained later in Section 4.1.

3.2 Objective Function. Many objective criteria are used
for the topology optimization of compliant mechanisms. The c
teria used in@19# and@20# are used in this paper. The intent behin
them is to achieve optimum balance between a flexibility meas
and a stiffness measure because compliant mechanisms shou
flexible enough to deform but a counter measure to prevent
cessive, unbounded flexibility is also required. The mutual str
energy,MSE, is one criterion of flexibility as it is numerically
equal to the output displacement. The strain energy,SE, is a mea-
sure of stiffness which is essentially the input displacement m
tiplied by the input force. MaximizingMSE makes the mecha
nism most flexible, and minimizingSE maximizes the stiffness
The two measures can be combined in several ways but only
are shown below.

minimize:-MSE/SE (5a)

minimize:-sign(MSE)
MSE2

SE
(5b)

These objective functions are shown to possess unconstra
non-unique, local minima in the topology optimization proble
@20#. Such unconstrained minima are not likely to exist for t
shape optimization problem, which as stated earlier, is a sec
stage problem after the topology optimization stage. The sh
optimization simply aims to improve upon the topology solutio
by allowing for substantial shape changes that are not consid
in the topology optimization. However, the existence of local u
constrained minima for shape optimization is also not comple
ruled out. An example of this is illustrated in Fig. 5 for a comp
ant gripper shown in Fig. 4.

Figure 4~a! shows a polyethylene prototype of a compliant gri
per while Fig. 4~b! is the schematic of the symmetric left half. Th
dark curve in Fig. 4~b! is the compliant segment whose shape
modified by varying the coordinates of the second and third po
of the Bezier control polygon shown in dashed lines. ThenMSE
JUNE 2003, Vol. 125 Õ 255
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andSE are both functions ofxc1 , yc1 , xc2 , andyc2 . The objec-
tive functions in Eq.~5! are plotted in Fig. 5 where only on
variable (yc2) is varied. It can be seen that the second object
function possesses an unconstrained local minimum. It was
found to have an unconstrained minimum when bothx and y
coordinates of the second control point were varied@32#. Although
such constrained minima could exist for shape optimization pr
lems, some constraints cannot be avoided, and are in fact ne
sary to make the problem always well posed. In the presenc
constraints, maximizingMSE itself can give good local con
strained minima as shown in Section 5.

Fig. 4 „a… a compliant gripper „b… Schematic of the left half
along with the Bezier polygon

Fig. 5 Visualization of the objective functions by varying only
one variable
256 Õ Vol. 125, JUNE 2003
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3.3 Constraints

Length Constraint. A constraint on the length of the compli-
ant segment whose shape is optimized is often necessary in o
to compare different shapes on the basis of a uniform meas
The length constraint also has economic implication in terms
material used. Formulating the length constraint is quite straig
forward in the Bezier representation and in its beam elem
based finite element implementation used in this paper.

Loop-Avoiding Constraint. As the coordinates of the contro
polygon are varied, the Bezier curve can sometimes cross it
creating a loop. Such a loop is not meaningful when beam e
ments based finite element model is used, as it will not corresp
to the physical model correctly. The constraint to avoid a loop c
be formulated using the following condition@33#:

l .a.c.[S m2
4

3D S n2
4

3D2
4

9
,0 (6)

Fig. 6 Illustration of loop avoiding constraint „a… without a
loop „b… with a loop
Transactions of the ASME
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wherem andn are given by

Q12Q05m~S2Q0!

Q32Q25n~Q32S!

with S denoting the point of intersection of linesQ0Q1 andQ2Q3
in the Bezier control polygon. It is illustrated in Fig. 6 with tw
cases showing no loop (l .a.c,0) and a loop (l .a.c..0) respec-
tively. When l .a.c. is zero, it indicates the occurrence of a cus

Intersection Avoiding Constraint.When two or more adjacen
segments in a compliant topology are optimized, there is a da
of intersection among them. This can be easily dealt with beca
Bezier curves always lie within the convex hull of their corr
sponding control polygons. Therefore, by imposing geome
constraints on the nodal coordinates~design variables! of the des-
ignable control points, each segment can be restricted to de
region. Fig. 7 shows how one segment can be restricted to lie
specified region. This introduces mostly linear constraints
lower and upper bounds on the design variables.

4 Implementation and Solution Procedure
First, one or more compliant segments are identified for sh

optimization in a given topology. If the topology is obtained fro
a topology optimization method, compliant segments and ri
segments in it are identified. The experience with topology o
mization indicates that they are almost always composed of fl
ible portions and relatively rigid segments@34#. These can be
identified easily by examining the deformed profile of the so
tion. If a portion of the design displaces more or less like a ri
body rather than by elastic deformation, then it is a candidate
a rigid segment. A nominal shape is assigned to compliant s
ments that will be optimized for shape. Each compliant segme
then associated with a Bezier control polygon. In the examp
presented in the next section, only the middle two control po
are used to define design variables. The nodes for the beam
ments are readily obtained by varying the parametert uniformly
from 0 to 1. As mentioned earlier, this enables re-meshing a
extra cost in addition to achieving appropriate node density
high and low curvature regions. Re-meshing here implies that
nodal coordinates are generated anew after every iteration. Fo
discretized two-noded, beam finite element model, the term
Eq. 5 are given by

MSE5VTKU
(7)

Fig. 7 Geometric constraints to prevent intersection of differ-
ent segments. The permissible region for the control polygon
of the segment in bold line is shown as a dashed line.
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whereK is the stiffness matrix of the entire compliant mechanis
U is the displacement vector under the applied input loadF satis-
fying KU5F, and V is the displacement vector and the un
dummy loadf applied at the output point and satisfyingKV 5f.
The constraints are included as discussed in the previous sec
MATLAB’s ‘‘constr’’ function from the Optimization Toolbox,
which uses the sequential quadratic programming algorithm,
used to solve the optimization problem. The derivatives were s
plied to ‘‘constr’’ function using the sensitivity analysis describe
below.

4.1 Sensitivity Analysis. Considering one Bezier curve seg
ment, the objective function in terms of the design variables, i
four coordinates of middle two control points is

f ~xc1 ,yc1 ,xc2 ,yc2!52MSE2/SE (8)

Since the objective function is indirectly related to the des
variables via the coordinates of the control points, the nodal
ordinates can be used as the bridge between the objective fun
and the design variables. The coordinates of nodes on the c
can be described in parametric form by substituting coordina
into Eq. ~1! as shown below.

@xk yk#5@B0~ tk! B1~ tk! B2~ tk! B3~ tk!#F x0 y0

xc1 yc1

xc2 yc2

x3 y3

G
(9)

where the subscriptk indicates the number of the node on th
curve corresponding to the parametertk ; x0 , y0 , x3 , y3 are the
coordinates of two end control pointsQ0 and Q3 respectively;
xc1 , yc1 , xc2 , yc2 are the coordinates of two middle contro
points Q1 and Q2 respectively. By the chain rule of differentia
tion, the function gradients can be written as

] f

]xc1
5 (

k51

NNODE
] f

]xk

]xk

]xc1
;

] f

]yc1
5 (

k51

NNODE
] f

]yk

]yk

]yc1
(10)

] f

]xc2
5 (

k51

NNODE
] f

]xk

]xk

]xc2
;

] f

]yc2
5 (

k51

NNODE
] f

]yk

]yk

]yc2

The derivatives of the nodal coordinates with respect to the de
variables are the Bernstein’s basis functions as indicated belo

]xk

]xc1
5B1~ tk!;

]xk

]xc2
5B2~ tk!

(11)
]yk

]yc1
5B1~ tk!;

]yk

]yc2
B2~ tk!

The derivatives of the objective function with respect to the no
coordinates are obtained using the normal procedure used in s
tural optimization@35#. For the sake of completeness, the deriv
tives of MSE andSE are given below.

]~MSE!

]dk
52VT

]K

]dk
U (12a)

]~SE!

]dk
5

1

2
UT

]K

]dk
U (12b)

whered is any design variable.]K /]dk in the above equations is
obtained by assembling the element-wise derivatives,
]kelem/]dk in the same manner as the global stiffness matrixK is
assembled withkelem’s.

The sensitivities of the constraints are obtained in the sa
way. The length constraint and the loop-avoidance-constr
JUNE 2003, Vol. 125 Õ 257



given below, are nonlinear but can easily be dealt with throu
symbolic manipulation software such as MAPLE.
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n51

NELEM
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NELEM

@~xj2xi !
21~yj2yi !

2#n
1/2<L* (13a)
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l .a.c.[S m2

4

3
D S n2

4

3
D 2

4

9
,0 (13b)

where
m5
Axc1

2 22xc1x01x0
21yc1

2 22yc1y01y0
2

A~xc122xc1x01x0
21yc1

2 22yc1y01y0
2!~2x0yc21x0y31x3yc22xc2y32x3y01xc2y0!2

~2x3yc11xc2yc11x3y02xc2y01xc1y32x0y32xc1yc21x0yc2!2

n5
Ax3

222x3xc21xc2
2 1y3

222y3yc21yc2
2

A~x322x3xc21xc2
2 1y3

222y3yc21yc2
2 !~xc1y31x3y02xc1y02x0y32x3yc11x0yc1!2

~2x3yc11xc2yc11x3y02xc2y01xc1y32x0y32xc1yc21x0yc2!2
m

ht of
g-
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In the examples solved, since there were more constraints
the design variables, direct method was used instead of the ad
method@35#.

5 Examples and Discussion
The compliant mechanism solutions obtained with topology

timization methods need to be studied carefully to extract a me
ingful topology from them. One way to do this is through a kin
matic interpretation of the mechanism solution. The question
ask here is the deformation of which segments is giving the
quired mobility to the mechanism. In the examples given in Fig
such segments can easily be identified when undeformed and
formed configurations are superimposed on one another. Fi
2~c! and 2~e! show this where it can be seen which segments
critical for the functional character of the mechanism. In order
further improve the performance, shape optimization of such s
ments can be performed using the procedure outlined in this
per. Once the kinematic character of a topology understo
equivalent kinematic interpretation is often possible to simp
the topology and make it suitable for shape optimization. Sim
interpretation is also possible with continuum topology solutio
~Figs. 2~b!, ~d!, and ~f!! which often reply upon flexural pivots
The topologies considered in the two examples discussed in
section are equivalent kinematic interpretations of compliant
pologies. These are chosen to illustrate the method over ac
optimal compliant topologies because more constraints~segment
intersection, for example! and practical considerations can be se
in these two examples.

5.1 Example1: Gripper. Taking the topology of the com
pliant gripper shown in Fig. 4~a!, the following problem is posed
for shape optimization. As shown in Fig. 8, only the left half
used due to symmetry. It is divided into two compliant segme
that are represented as two Bezier curves. The end points of
the control polygons are fixed. This means that the fixed point,
output point, and the input point are not changed during sh
optimization. Thex andy coordinates of the middle control point
on the left control polygon (xb1 ,yb1 ,xb2 ,yb2) and one of the
middle control point of the right polygon (xc1 ,yc1), and only the
x coordinate of the other control point (xc2) of the right polygon
constitute the seven designs variables in this problem. They co-
ordinate of the middle control point of the right polygon is fixed
the same value as they coordinate of the input point in order t
maintain the symmetry in slope at the input point. Here, an
portant property of Bezier curves is used in that the Bezier cu
is tangential at the end point to the line joining the end point a
han
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the middle control point adjacent to it. The optimization proble
in seven variables and eight constraints is stated below.

min:2MSE~xb1 ,yb1 ,xb2 ,yb2 ,xc1 ,yc1 ,xc2!

s.t.

g15 (
i 51

NELEM

Li2L0<0

g25yc12kaxc1<0

g35yc22kaxc2<0
(14)

g45 l .a.c.1;

g55 l .a.c.2;

g65xc12xLB<0

g75xc22xUB<0

g85xLB2xc2<0

and equilibrium equations with boundary conditions.
whereg1 is the length constraint;g2 andg3 are geometric space
constraints to prevent intersection of the two segments whereka is
the slope of the line that bounds the second segment to the rig
the line joining the fixed point and the point where the two se
ments join;g4 andg5 are loop-avoidance constraints; andg6–g9
are bounds on the variables to restrict the design to the prescr

Fig. 8 Shape optimization problem specifications for the
gripper
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region. Other parameters considered were: cross-sectional
area5A56.25e22 in2; thickness5t52.5e21 in; moment of
inertia5In53.2552e204 in4; Young’s modulus of material5E
52.9e105 psi; and applied input force5F55 lb.

For the initial guess of@21.0, 2.0,22.0, 4.0, 1.0, 3.0, 2.0#, the
optimum solution shown in Fig. 9 was obtained. It should
noted that, the slope of the right end of the segments ending on
axis of symmetry is indeed is zero at that point although it is n
obvious from the figure. This is because the curve starts here
horizontal line~if we zoom in, it can be seen clearly!, dips down
and then moves up. The initial guess was chosen to be close t
shape of the gripper shown in Fig. 4~a!. The optimum solution
was found to be@22.1307, 1.3632,22.0413, 3.3225, 2.0000
21.3368, 2.500#. The objective function history during the itera
tive process is shown in Fig. 10. The history shows both feas
and infeasible designs that occurred during the search. It ca
seen that the objective function was decreased from20.9 to
21.5, which is a 67% improvement over the original design. T
fabricated polyethylene prototype is shown in Fig. 11.

5.2 Example 2: Crimping Tool. The skeletal model of the
top symmetric half of a crimping tool is shown in Fig. 12. This

Fig. 9 Optimum solution and its deformed profile for the
gripper

Fig. 10 Iteration history for the shape optimization of the
gripper
Journal of Mechanical Design
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an equivalent topology obtained by kinematically interpreting
topology optimization solution. This example is used in ma
papers in the literature. Here, only the essential topology and
identified compliant segments are taken. In this design, there
two segments to be optimized. The third straight-line segmen
not optimized. Its end points on the two curved segments
chosen at fixed values of the parametert in the respective Bezier
curves. There are eight design variables in this example.
seven variables are similar to the ones in the last example.
eighth one (yb0) is added to vary they coordinate of the fixed
point A. The optimization problem statement is shown in Eq.~15!.
The explanation of all the constraints is the same as in the pr
ous example.

min:2MSE~xb1 ,yb1 ,xb2 ,yb2 ,xc1 ,yc1 ,yc2 ,yb0!

s.t.

g15 (
i 51

NELEM

Li2L0<0

g25yc12kbxc1<0

g35yc22kbxc2<0 (15)

g45 lac1;

g55 lac2;

g65y1
LB2yc1<0

g75y2
LB2yc2<0

and equilibrium equations with boundary conditions.

Fig. 11 Polyethylene prototype of the shape-optimized compli-
ant gripper

Fig. 12 Shape optimization problem specifications for the
crimper
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The remaining data for this example was as follows: cro
sectional area5A56.25e22 in2; thickness5t55e21 in; mo-
ment of inertia5In53.2552e24 in4; Young’s modulus of
material5E52.9e15 lb/in2; applied input force5F55 lb. The
initial guess was chosen such that the shape resembles that

Fig. 13 Shape-optimized crimper and its deformed profile

Fig. 14 Polyethylene prototype of the optimized crimping tool
„a… undeformed „b… deformed under actuation
260 Õ Vol. 125, JUNE 2003
ss-

of an

existing topology-optimized crimping tool. With the initial gues
of @24.0593, 2.3791,21.7885, 5.000, 2,1.9, 2.2, 1#, an optimum
solution was found to be:5@5.0000, 2.4652, 4.3608, 2.2941
2.4400, 0.8347, 0.4704, 4.6503#. Figure 13 shows the optimum
solution and its deformed profile. The objective function d
creased from20.025 of the initial design to20.4 in the opti-
mized design, which is a significant improvement. Fabrica
polyethylene prototype is shown in Figs. 14~a! and 14~b! in its
original and deformed configurations respectively.

Conclusions
Although topology optimization methods developed for comp

ant mechanisms generate shape at the same time, there are
limitations to the generated shapes. This is true for both be
element-based ground structure as well as continuum elem
based design parameterizations. In this paper, optimization
shapes of the compliant segments in a given topology is con
ered as a second-stage design. Systematic procedure for s
optimization including practical constraints and sensitivity ana
sis is presented. The width of the skeletal structure of the mec
nism is held fixed but could be varied as well. Cubic Bez
curves were chosen to vary the shape as freeform curves bec
of their many attractive properties for shape optimization. The t
examples presented indicate that substantial improvement ca
achieved with shape optimization. The shape optimization
practical utility to further improve the compliant mechanism d
signs obtained with topology optimization or by other means.
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