Freeform Skeletal Shape
Optimization of Compliant
Mechanisms

Dong Xu Compliant mechanisms are elastic continua used to transmit or transform force and
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1 Introduction The focus of this paper is on the skeletal shapes of individual
%mpliant segments in a given topology. Finally, the size refers to
e dimensiongthickness, width, etg.that completely determine

physical form with a chosen topology and shape. The design
ethods developed for compliant mechanisms, although called
e topology optimization methods, are capable of determining
not only the topology but also the shape and size. However, there
Gﬁe some limitations to this approach as explained next.

Fully compliant mechanisms are elastic continua that are us
to transmit or transform force and motion mechanically. The ad-
vantages of these mechanisms over rigid-body mechanisms
due to the absence of rigid-body kinematic joints. Some of t
many advantages are less friction and wday ease of manufac-
turing without assembly2], provision for nonmechanical actua-
tion [3], etc. Compliant mechanisms are used in product desi
(e.g.,[4-7]), offshore structuref8], smart structurefd], Micro- 1.1 Background and Motivation. The principal feature of
Electro-Mechanical Systenj$0], and minimally invasive surgery the topology optimization methods is its design parameterization
[11], etc. The systematic design of compliant mechanisms hgger a fixed reference design domain. Design parameterization
received significant attention in the last decade resulting in twafers to the set of variables that enable smooth variation of the
categories of methods. In the first category, rigid-body mechaniggBometrical form of the continuum and allow for large and sig-
techniques are utilizef, 12,13 and in the second category strucyficant variations in design. Smooth variation is necessary for
tural optimization methods are suitably enhangedl. Since the ' gradient-based optimization methods. The phrase “fixed reference
subject matter of this paper is concerned with the latter categoryygmain” implies that the geometric domain of interest is not al-
brief overview of those methods is provided below. _tered during the iterative process of optimization. In the numerical

As in the design of any mechanical device, the first step in the,sjementation, when discretized finite element meshed-models
design of compliant mechanisms is the generation of the ‘?an%ﬁ’g used, this simply means that the mesh is fixed implying that
where creativity and prior experience usually play a significaplyges are neither added/subtracted nor their connectivities and
role. Since a fully compliant mechanism is a single entity of af,orginates altered in any way. In this setting, variation of the
elastic material continuum, the concept generation here entails metrical form is accomplished in two ways. One is by altering
determination of the geometrical form of this continuum. Thre e properties of a “composite material” composed of the actual
levels of hierarchy are identifigd in the literature to describe tnﬁaterial and void by way of theomogenization methdd5] or
geometry:topology sha_pe andsize Topol_ogy refers to the num- simply by multiplying the material properties with a fictitious den-
ber of holes in the continuum and how different regions of intereg y function[16]. This is applicable when continuum finite ele-
(input/output ports and _fi_xed pqrt_i@nare connected to each Other'ments such as the plane-stress elements in the 2-D case, are used
.TTUS’ a topfl(c;gy_tlrc]ientlflr:as t{; fm"g numb;ar OT seg_mentls t?a{; iethe’implementation. The other way is to assign a vari:':lble to
interconnected with each other. LINCe a topoiogy IS Selected, Hik ) alement in the mesh. Ifground structureof truss or frame
2EZS§SC§; é?tﬁ(;:]Sle\/'tﬂléagoien%rgfyn;sh;;eegfg)zl_)g gre:t?flrjmc,!gﬁﬂhu aeme_nts is used, such a variable could simply be the thickness or
or the skeletal shape of frame-like compliant mechanisms. T eeenW'gt(;]aoietgeféfcé?)rr'gu:g;?&f‘;iﬁfﬂ% Bc:gai?ﬁégﬁf::: 2?\;?
two types are schematically illustrated in Fig. 1. In bounda 1 Si mEnc[l?] Nishivr\)/aki et al[18] and o.thers have used the :
shape optimization, the shapes of the holes and/or the exte Arflt,inu%m elemer’ItS' and Frecker.et[aD] Saxena and Anantha-
boundary are varied. On the other hand, in skeletal shape optifi ' '
zation the shapes of the medial-axes of the segments are varieti€SH20], and others have used the frame element-based ground

structure approach. Figure 2 shows three examples solved using

Contributed by the Design Automation Committee for publication in theR) both the methods where, in addition to the tapolagy, the shape and

NAL OF MECHANICAL DESIGN. Manuscript received July 2001; revised May 2002.SiZ€ are also determined simultaneously.
Associate Editor: G. M. Fadel. As can be seen in Fig. 2, in both methods, the shapes of the
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Fig. 1 Two types of shape optimization (a) optimizing the 7\
boundary shapes of holes (b) optimizing the skeletal curves of N
the segments. Both are capable of generating the same struc-
ture if the width of the segments is varied along with the curves

in the latter.

flexible segments are restricted either by the type or the resoluti A A A A

of the design parameterization. If truss or frame elements are us (e) 6))

(Figs. da), 2(c), 2(e)), the shapes of the compliant segments at

restricted to a finite number of slopes. If continuum elements are

used(in this 2-D case, plane-stress elemgfiesxural pivotsoften Fig- 2 Optimal topologies for compliant mechanisms using
appear(Figs. ab), 2(d), 2(f)). A flexural pivot is the location quanr:fn%giﬁgg sErzugtgr&e me)th‘?l_dhe S(hza%ezg;egoﬁgligﬂ?tgéﬂqeﬂ:'
where two square plane-stress elements meet diagonally ata pping, ground structure désigns have a limited number of
or otherwise create a short and very thin segment connecting tgnes ‘and the continuum designs mostly rely upon flexural
relatively more rigid segments. In practice, this needs to be rgyos.

placed with a longer flexural segment to avoid stress concentra-

tion and improve manufacturabilify21]. Such flexural pivots do
not take advantage of the distributed compliafeich is ben-
eficial from the viewpoint of strength consideratipo$ a compli-
ant segment. Furthermore, in order to obtain smooth shapesb
either method, a very high resolution of the mesh is required. T
increases the problem size. Thus, both methods are restrictiv

terms of the shapes that they generate. To overcome this limi %ape optimization methodology can be categorized as: entire do-

tion, this paper focuses on optimizing the skeletal shape of tmam based method that uses the finite element models; boundary
flexible segments in compliant mechanisms. This implies that %

undaries of 2-D and 3-D structures. A lot of innovative methods
ve been investigated. A good review of shape optimization can
& found in[23]. According to the object that is modified, the

; X . face based method that uses the boundary element method; and
topology is necessary to begin the process of shape optimizati - X
In this regard, the procedure outlined in this paper can be thou oundary contour method. When a finite element model is used

shape optimization, it is necessary to discretize the whole de-
of as a second stage of optimization to further improve the pef; ign domain each time during the iterative process, while the
formance of a compliant mechanism.

boundary element-based method only requires the discretization
1.2 Organization of the Paper. In Section 2, related work of the boundary surface. The boundary contour method offers a
on shape optimization of structures and compliant mechanismdugther reduction in dimensiong24,25. These are all gradient-
described. The statement of the shape optimization problembigsed methods, where the function gradients are essential for the
outlined in Section 3 by presenting the design parameterizatioptimization techniques such as Sequential Quadratic Program-
using Bezier curves, the objective function, and the constraint®ing (SQP method. On the other hand, techniques other than
Section 4 has sensitivity analysis and details of the solution praxathematical programming such as the genetic algorithms have
cedure. Section 5 has two examples. The paper is concluded viétho been applied to shape optimization. Some recent works on
some remarks in Section 6. shape optimization that use genetic algorithms are described in
[26] and[27].
S From the perspective of the geometric model, or more specifi-
2 Related Work on Shape Optimization cally, the selection of the design variables, there are many ap-
There are different interpretations of shape optimization in theoaches in the literature. Zienkiewicz and Campf2#i] defined
literature. For example, the procedure to obtain an optimum topiire nodal coordinates of the finite element model as the design
logical layout of a structure using frame elements has been calleariables, which make the optimization task very difficult as arbi-
shape optimization of skeletal structurg®2]. Most recent re- trary changes in the nodal coordinates could lead to improper
searchers focused on investigating the optimal shape of ttupologies and shapes. In some other approaches, a set of key
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5 " " ‘ , T - obtained. It is then natural to use the coordinates of the control
points as the design variables in shape optimization. One of the

asp 1 many interesting properties of the Bezier curves is that the curve
always lies inside the convex hull of the control polygon. This is
ar 1 attractive from the viewpoint of applying constraints to restrict the

curves to prescribed geometric domain. Another attractive prop-
erty overcomes the need for re-meshing after every iteration,
which is one of the main difficulties in most other shape optimi-
zation methods. This is because the points on the Bezier curve can
be directly used as nodes in the finite element beam model. Fur-
thermore, if uniform parameterization iris used(i.e., from point

to point, At is constant the points on the curve are distributed
such that more point&and therefore nodgsippear in the regions

of large curvature. This can be explained as follows. The curva-
ture c of a parametric curv® can be expressed as

35|

251 i

15 2 25 3 35 : 45 5 | Px p|
* Cc= '53 (3)

Fig. 3 Bezier control polygon and the corresponding curve . .. ) o )
whereP andP are the first and second order derivative$afith

respect to the parameterespectively(the cross product of them

points or master nodes is used to define the geometry entit B poly_nomlal of parametd), ands_ls the derivative of curve
ngth with respect to the parameteri.e.,

[29,30. And recently the parametric and feature based CAD geo-
metric modeling is becoming a powerful tool in shape optimiza- ds As
tion where some key dimensions are used to control the shape by §=—~—— 4)
describing the location of the control points. The connection be-
tween CAD and CAE makes it an easier task to carry out the FEZquations(3) and (4) indicate that the curvature is going to be
on the geometric model based on the CAD models. larger whenAs is small for fixedAt. In other words, for the

In the compliant mechanisms literature, although there are megion where the curvature is large, more nodes are going to be
merous papers on topology optimization, the shape optimizatioreated which is desirable in a finite element model that uses
has received very little attention. Hetrick and K¢&l] varied the two-noded beam elements. This is clearly evident in Fig. 3. Thus,
coordinates of a few master nodes in a finite element model caamn adaptive mesh is naturally created with uniform parameteriza-
sisting of frame elements within a range in order to vary thion int. Bezier curves are also amenable for analytical sensitivity
shape. In the present paper, the shapes of the compliant segmangysis as explained later in Section 4.1.
in a given topology are allowed to vary freely in order to find the

bestfreeformshape. 3.2 Objective Function. Many objective criteria are used

for the topology optimization of compliant mechanisms. The cri-

3 Problem Statement teria used ir[1£_9] and[2(_)] are used in this paper. The intent behind
them is to achieve optimum balance between a flexibility measure

The segment-wise, freeform shape optimization problem fand a stiffness measure because compliant mechanisms should be

compliant mechanisms is presented in this section. The desitgxible enough to deform but a counter measure to prevent ex-

variables, the objective function, and the constraints are descrilm$sive, unbounded flexibility is also required. The mutual strain

in that order. energy,MSE, is one criterion of flexibility as it is numerically

equal to the output displacement. The strain enesdy,is a mea-

3.1 . Design P.arame.terlzatllon. The primary criterion fqr .sure of stiffness which is essentially the input displacement mul-
choosing the design variables is that they cause smooth variationg . by the input force. Maximizingd SE makes the mecha-

in the shape of a compliant segment. This will ensure that desig m most flexible, and minimizinG E maximizes the stiffness.

c_ierivatives can be easily comput(_ed for gradient-based optimiz e two measures can be combined in several ways but only two
tion methods. The number of variables should be small enoug|

but should be able to cover a large design space of shBpeger shown below.

curvessatisfy both the requirements and are widely used in mod- minimize:-MSE/SE (5a)
eling curves. They are also simpler to use when compared to more MSE

sophisticated B-splines. A cubic Bezier curve in its parametric e i

form is given by minimize: S|gn(MSE)¥ (5b)

P(t)=[Bo(t) By(t) By(t) Bs(t)] [Qy Q: Q, Qs]" These objective functions are shown to possess unconstrained,
(1) non-unique, local minima in the topology optimization problem
[20]. Such unconstrained minima are not likely to exist for the
shape optimization problem, which as stated earlier, is a second-
stage problem after the topology optimization stage. The shape
optimization simply aims to improve upon the topology solutions
by allowing for substantial shape changes that are not considered

where P(t) contains thex andy coordinates of a point on the
curve corresponding to the parameterhich takes values from O
to 1 from one end of the curve to the other elds are cubic
Bernstein’s basis functions given by

Bo(t)=(1—1)3 in the topology optimization. However, the existence of local un-
By(t)=3(1—1)2 constrained minima for shape optimization is also not completely
B,(t)=3(1- )12 (2)  ruled out. An example of this is illustrated in Fig. 5 for a compli-

Ba(t)=t3 ant gripper shown in Fig. 4.
8 Figure 4a) shows a polyethylene prototype of a compliant grip-
andQ’s are thex andy coordinates of four points that form theper while Fig. 4b) is the schematic of the symmetric left half. The
Bezier control polygonFigure 3 shows the control polygon anddark curve in Fig. &) is the compliant segment whose shape is
the Bezier curve. By moving the control points, a wide variety ahodified by varying the coordinates of the second and third points
cubic curves that span a large design space of shapes canobthe Bezier control polygon shown in dashed lines. TMBE
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(Xe2, ycz)/D ~—-a_

Fig. 4 (a) a compliant gripper (b) Schematic of the left half
along with the Bezier polygon

and SE are both functions of¢;, Yc1, Xe2, andy.,. The objec-
tive functions in Eq.(5) are plotted in Fig. 5 where only one
variable {/.,) is varied. It can be seen that the second objecti
function possesses an unconstrained local minimum. It was a
found to have an unconstrained minimum when bptland y
coordinates of the second control point were vaf&g. Although
such constrained minima could exist for shape optimization pro
lems, some constraints cannot be avoided, and are in fact nec
sary to make the problem always well posed. In the presence
constraints, maximizingM SE itself can give good local con-
strained minima as shown in Section 5.
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Fig. 5 Visualization of the objective functions by varying only
one variable
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Fig. 6 lllustration of loop avoiding constraint (a) without a
loop (b) with a loop

3.3 Constraints

Length Constraint. A constraint on the length of the compli-
ant segment whose shape is optimized is often necessary in order
to compare different shapes on the basis of a uniform measure.
The length constraint also has economic implication in terms of
material used. Formulating the length constraint is quite straight-
forward in the Bezier representation and in its beam element
based finite element implementation used in this paper.

Loop-Avoiding Constraint. As the coordinates of the control
polygon are varied, the Bezier curve can sometimes cross itself
creating a loop. Such a loop is not meaningful when beam ele-
ments based finite element model is used, as it will not correspond
to the physical model correctly. The constraint to avoid a loop can
be formulated using the following conditid83]:

[m5ln3)-3
l.a.c.= mfg nfg)f§<0 (6)
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1
SE=-UTKU

2
whereK is the stiffness matrix of the entire compliant mechanism,
U is the displacement vector under the applied input IBagtis-
fying KU=F, andV is the displacement vector and the unit
dummy loadf applied at the output point and satisfyikty =f.
The constraints are included as discussed in the previous section.
MATLAB's “constr” function from the Optimization Toolbox,
which uses the sequential quadratic programming algorithm, was
used to solve the optimization problem. The derivatives were sup-
plied to “constr” function using the sensitivity analysis described
below.

r'—> Displacement

Non-rectangular
design domain

4.1 Sensitivity Analysis. Considering one Bezier curve seg-

Force ment, the objective function in terms of the design variables, i.e.,
........................................ ] four coordinates of middle two control points is
f(xclfyclaXCZvycz)z_MSEZ/SE (8)
Fig. 7 Geometric constraints to prevent intersection of differ- Since the objective function is indirectly related to the design

ent segments. The permissible region for the control polygon

of the segment in bold line is shown as a dashed line. variables via the coordinates of the control points, the nodal co-

ordinates can be used as the bridge between the objective function
and the design variables. The coordinates of nodes on the curve
can be described in parametric form by substituting coordinates

wherem andn are given by into Eq. (1) as shown below.

Q1~Qo=m(S-Qy) o Yo
Xc1 Y
Q3= Q2=n(Qs—9) [X« Yil=[Bo(te) Ba(ty) Ba(ty) Ba(ty] VY
with S denoting the point of intersection of liN€Q; andQ,Q; oz Jez
in the Bezier control polygon. It is illustrated in Fig. 6 with two X3 Y3
cases showing no loop.@.c<0) and a loop (.a.c.>0) respec- 9)

tively. Whenl.a.c. is zero, it indicates the occurrence of a cuspwhere the subscripk indicates the number of the node on the

Intersection Avoiding Constraint. When two or more adjacent CUrVe corresponding to the parametgr Xo, Yo, X3, Y3 are the
&Qrdlnates of two end control point3, and Q3 respectively;

segments in a compliant topology are optimized, there is a dan'%él Vei, Xz, Yo are the coordinates of two middle control

of intersection among them. This can be easily dealt with becal - ndo~ T tively. By the chain rule of differenti
Bezier curves always lie within the convex hull of their correP? thlfa t.QZ esg_ect . g e't(t: ain ruie o erentia-
sponding control polygons. Therefore, by imposing geometrﬂ:on' € function gradients can be writien as

constraints on the nodal coordinateesign variablesof the des- NNODE NNODE

( , : , f af ox, of ot ayy

ignable control points, each segment can be restricted to desired = 2 — = —

region. Fig. 7 shows how one segment can be restricted to lie in a IXer k=1 X Xy Yer k=1 Yk WY1 (10)
specified region. This introduces mostly linear constraints or NNODE NNODE

lower and upper bounds on the design variables. of _ of ox  of It ayx

Xy &L Xk IXe2' N &1 Ik IYeo

4 Imol . d Solution P d The derivatives of the nodal coordinates with respect to the design
mplementation an olution Procedure variables are the Bernstein’s basis functions as indicated below.
First, one or more compliant segments are identified for shape

optimization in a give_n topology. If the to_pology is obtained fro_m_ ﬂ =B, (ty); ﬂ =B,(ty)

a topology optimization method, compliant segments and rigid IXc1 IXco (11)
segments in it are identified. The experience with topology opti- g P

mization indicates that they are almost always composed of flex- Dk _ By(ty); iBz(tk)

ible portions and relatively rigid segmenf84]. These can be IYe1 " 0Yco

identified easily by examining the deformed profile of the solurne gerivatives of the objective function with respect to the nodal
tion. If a portion of the design displaces more or less like a rigighordinates are obtained using the normal procedure used in struc-

body rather than by elastic deformation, then it is a candidate fofa| optimization[35]. For the sake of completeness, the deriva-
a rigid segment. A nominal shape is assigned to compliant s§fes of MSE and SE are given below.
ments that will be optimized for shape. Each compliant segment is

then associated with a Bezier control polygon. In the examples dMSE) _y 9K

presented in the next section, only the middle two control points ad, Tﬂde (129)
are used to define design variables. The nodes for the beam ele-

ments are readily obtained by varying the parameteniformly a(SE 1 K

from O to 1. As mentioned earlier, this enables re-meshing at no ad, §U O—,_dku (120)

extra cost in addition to achieving appropriate node density in ) . ) . ) .
high and low curvature regions. Re-meshing here implies that th&ered is any design variableiK/ad, in the above equations is
nodal coordinates are generated anew after every iteration. For @gained by assembling the element-wise derivatives, i.e.,
discretized two-noded, beam finite element model, the terms qKeten/ 9di in the same manner as the global stiffness maris
Eq. 5 are given by assembled \{vlltr.k.e,ems. . ' .

The sensitivities of the constraints are obtained in the same

MSE=VTKU way. The length constraint and the loop-avoidance-constraint

)
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symbolic manipulation software such as MAPLE. l.a.c m——||n——=|—=<0 (130)

given below, are nonlinear but can easily be dealt with through ( 4)( 4) 4
NELEM NELEM . 3 3 9

> Le= X [0G—x)2+(y;—y)2I¥2<L*  (139)
n=1 n=1 where

2 2.2 2
\/Xcl —2Xc1Xo T Xg T Ye1—2Yc1YoT Yo

m=

\/( Xe1— 2Xc1Xo+ X5+ Vo1 — 2Ye1Yo+ Y6) (—XoYea+ XoYa+ XaYer — XeaY3— XaYo+ Xc2Yo)?

2
(=X3Ye1+XcaYe1+ X3Yo— XcaYo+ Xe1Ys— XoY3— Xc1Ye2 T XoYe2)

2 2 2 2
\/X3 —2X3Xc2 T X0+ Y3~ 2Y3Y o2t Yoo

n:
\/(Xs — 2XgXeo+ oo+ Y5 2Y3Yeat+ Vi) (Xe1Ya+ XaYo— Xe1Yo— XoY3— XaYe1 + XoYe1)?

2
(—X3Ye1tXcaYe1t X3Yo~ XcaYo+ Xe1Y3— XoY3— Xc1Ye2 T XoYe2)

In the examples solved, since there were more constraints thhe middle control point adjacent to it. The optimization problem
the design variables, direct method was used instead of the adjdimseven variables and eight constraints is stated below.

method[35]. .
[35] min: =M SE(Xp1,Yp1:Xp2,Yb2:Xc1,Ye1 s Xc2)
S.t.
5 Examples and Discussion NELEM
The compliant mechanism solutions obtained with topology op- 91= Zl Li—Lo<0
timization methods need to be studied carefully to extract a mean-
ingful topology from them. One way to do this is through a kine- 92=Yc1— KaXc1<0
matic interpretation of the mechanism solution. The question to
ask here is the deformation of which segments is giving the re- 03= Yo~ KaXc2<0O (14)
quired mobility to the mechanism. In the examples given in Fig. 2, ga=l.a.c.1;
such segments can easily be identified when undeformed and de- AT
formed configurations are superimposed on one another. Figure gs=I.a.c.2;
2(c) and 2e) show this where it can be seen which segments are LB
critical for the functional character of the mechanism. In order to 96=Xc1—X =<0

further improve the performance, shape optimization of such seg-
ments can be performed using the procedure outlined in this pa-
per. Once the kinematic character of a topology understood, gg=x"B—x,=<0
equivalent kinematic interpretation is often possible to simpli I . . .

d equilibrium equations with boundary conditions.

the topology and make it suitable for shape optimization. Simil h is the | h . d .
interpretation is also possible with continuum topology solutiondNereg; Is the length constraing, andgs are geometric space
(Figs. 2b), (d), and (f)) which often reply upon flexural pivots. constraints to prevent intersection of the two segments whgise

The topologies considered in the two examples discussed in tﬁl& s]opg (.)f.the line t.hat boqnds the seconq segment to the right of
section are equivalent kinematic interpretations of compliant t82€ line joining t';e fixed lpomt anthhe point where the two seg-
pologies. These are chosen to illustrate the method over act(§nts join:d, andgs are loop-avoidance constraints; aggh-go
optimal compliant topologies because more constrasggment &€ bounds on the variables to restrict the design to the prescribed
intersection, for exampjeand practical considerations can be seen

in these two examples.

97:X027XUB$0

5.1 Examplel: Gripper. Taking the topology of the com- (xbz’ ybz)/a—”’
pliant gripper shown in Fig. (&), the following problem is posed
for shape optimization. As shown in Fig. 8, only the left half is(xbb ybl)“
used due to symmetry. It is divided into two compliant segment: 1
that are represented as two Bezier curves. The end points of bc
the control polygons are fixed. This means that the fixed point, th
output point, and the input point are not changed during shag
optimization. Thex andy coordinates of the middle control points
on the left control polygon X,;,Yp1:Xp2,Yp2) @and one of the
middle control point of the right polygorx{,,y¢;), and only the
x coordinate of the other control poinkg,) of the right polygon
constitute the seven designs variables in this problem.yTbe-
ordinate of the middle control point of the right polygon is fixed at
the same value as thecoordinate of the input point in order to
maintain the symmetry in slope at the input point. Here, an im-
portant property of Bezier curves is used in that the Bezier curey. 8 Shape optimization problem specifications for the
is tangential at the end point to the line joining the end point argtipper

(xc2» Ye2 =ﬁxed)
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Fig. 11 Polyethylene prototype of the shape-optimized compli-

Fig. 9 Optimum solution and its deformed profile for the .
ant gripper

gripper

. . . an_equivalent topology obtained by kinematically interpreting a
region. Other pargn;eters_ considered were: cross-sectional %ﬁ?ology optimization solution. This example is used in many
area=A=6.2%—2in"; thickness-t=2.%e—1in; moment of naners'in the literature. Here, only the essential topology and the
inertia=n =3.2552—04 ir’; Young's modulus of materialE jgentified compliant segments are taken. In this design, there are
=2.9e+05 psi; and applied input foreeF =5 Ib. two segments to be optimized. The third straight-line segment is
For the initial guess of 1.0, 2.0,-2.0,4.0, 1.0, 3.0, 20the ot optimized. Its end points on the two curved segments are
optimum solution shown in Fig. 9 was obtained. It should bgnosen at fixed values of the parameitén the respective Bezier
noted that, the slope of the right end of the segments ending on hgves. There are eight design variables in this example. The
axis of symmetry is indeed is zero at that point although it is N@even variables are similar to the ones in the last example. An
obvious from the figure. This is because the curve starts here asSighth one yy,) is added to vary they coordinate of the fixed
horizontal line(if we zoom in, it can be seen cleaylydips down point A. The optimization problem statement is shown in €4).

and then moves up. The initial guess was chosen to be close to g explanation of all the constraints is the same as in the previ-
shape of the gripper shown in Fig(ad. The optimum solution gys example.

was found to bd —2.1307, 1.3632,—2.0413, 3.3225, 2.0000, )
—1.3368, 2.500 The objective function history during the itera- min:—MSEXp1,Yb1:Xb2Yb2:Xc1:Ye1:Ye2sYbo)
tive process is shown in Fig. 10. The history shows both feasible

and infeasible designs that occurred during the search. It can be s.t.
seen that the objective function was decreased froM9 to NELEM
—1.5, which is a 67% improvement over the original design. The g.= z Li—Lo<O
fabricated polyethylene prototype is shown in Fig. 11. i=1
5.2 Example 2: Crimping Tool. The skeletal model of the 02=Yc1— KpXe1=<0
top symmetric half of a crimping tool is shown in Fig. 12. This is
93=Yc2— KpXco<0 (15)
gs=laci;
0'9 « b e o0 T ¥ 4 M 1
e . gs=lac2;
-l ] 96=Yi"—Ye1=<0
- 97=Y5"—Yer=<0
A and equilibrium equations with boundary conditions.
$ 12 4
[
g F
$ sl .. ] (xo2 ¥52)
5 .
(xs1, Yo1)
1.4} ! ] .
1
[}
1
1.5} P N i '
. A
- i L L ' 1 L Xpo=
5 5 10 15 20 25 30 35 (Xb0-sixect Y0 B
iteration
Fig. 10 Iteration history for the shape optimization of the Fig. 12 Shape optimization problem specifications for the
gripper crimper
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asl ] existing topology-optimized crimping tool. With the initial guess
of [ —4.0593, 2.3791,-1.7885, 5.000, 2,1.9, 2.2],Jan optimum
al i solution was found to be=[5.0000, 2.4652, 4.3608, 2.2941,
2.4400, 0.8347, 0.4704, 4.650Figure 13 shows the optimum
350 ] solution and its deformed profile. The objective function de-
creased from—0.025 of the initial design to-0.4 in the opti-
3L J mized design, which is a significant improvement. Fabricated
polyethylene prototype is shown in Figs. (&% and 14b) in its
5 25f . original and deformed configurations respectively.
2| - .
Conclusions
15| § Although topology optimization methods developed for compli-
ant mechanisms generate shape at the same time, there are some
1L 4 limitations to the generated shapes. This is true for both beam
element-based ground structure as well as continuum element-
0.5 8 based design parameterizations. In this paper, optimization of
0 05 1 15 2 25 3 35 4 45 5 shapes of the compliant segments in a given topology is consid-
X ered as a second-stage design. Systematic procedure for shape
Fig. 13 Shape-optimized crimper and its deformed profile optimization including practical constraints and sensitivity analy-

sis is presented. The width of the skeletal structure of the mecha-
nism is held fixed but could be varied as well. Cubic Bezier

The remaining data for this example was as follows: cros§Urves were chosen to vary the shape as freeform curves because
sectional area A=6.2%— 2 in> thickness-t=5e—1in: mo- °f their many attractive properties for shape optimization. The two
ment of inertia:In:3255$L4in4' Young's modu]us of examples presented indicate that substantial improvement can be

materiak E=2.9e+ 5 Ib/in2; applied input force: F=5 Ib. The achieved with shape optimization. The shape optimization has

initial quess was chosen such that the shape resembles that o ractical utility to further improve the compliant mechanism de-
9 P iaﬂs obtained with topology optimization or by other means.
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