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Abs t rac t .  The Convex Linearization method (CONLIN) ex- 
hibits many interesting features and it is applicable to a broad 
class of structural optimization problems. The method em- 
ploys mixed design variables (either direct or reciprocal) in or- 
der to get first order, conservative approximations to the objec- 
tive function and to the constraints. The primary optimization 
problem is therefore replaced with a sequence of explicit ap- 
proximate problems having a simple algebraic structure. The 
explicit subproblems are convex and separable, and they can be 
solved efficiently by using a dual method approach. 

In this paper, a special purpose dual optimizer is proposed 
to solve the explicit subproblem generated by the CONLIN 
strategy. The maximum of the dual function is sought in a 
sequence of dual subspaces of variable dimensionality. The pri- 
mary dual problem is itself replaced with a sequence of approxi- 
mate quadratic subpr0blems with non-negativity constraints on 
the dual variables. Because each quadratic subproblem is re- 
stricted to the current subspace of non zero dual variables, its 
dimensionality is usually reasonably small. Clearly, the Hessian 
matrix does not need to be inverted (it can in fact be singular), 
and no line search process is necessary. 

An important advantage of the proposed maximization 
method lies in the fact that most of the computational effort 
in the iterative process is performed with reduced sets of primal 
variables and dual variables. Furthermore, an appropriate ac- 
tive set strategy has been devised, that yields a highly reliable 
dual optimizer. 

1 I n t r o d u c t i o n  

This paper describes an efficient optimization algorithm 
particularly well adapted to solve many problems arising 
in structural  synthesis. Such design optimization prob- 
lems consist of minimizing some objective function subject 
to constraints, insuring the feasibility of structural  design. 

Mathematically, the numerical optimization problem con- 
sidered herein can be written in the following general form: 

min (i) 

subject to cj(z) <_0, ( j =  1 , . . . , m ) ,  (2) 

xi <-xi <-xi (i= l , . . . , n ) .  (3) 

The functions cj(z) (for j = 0 , . . . , m )  are linear or 
nonlinear functions of the design variables x i. The ob- 
jective function (1) usually represents a structural  charac- 
teristic to be minimized (e.g. the weight). The inequali- 
ties (2) are the behavior constraints that  impose limita- 
tions on structural  response quantities (e.g. upper bounds 
on stresses and displacements under static loading cases). 
The design variables must also be bounded by the side 
constraints (3), where ~. and Yi are lower and upper lim- 
its tha t  reflect manufacturing or analysis validity consid- 
erations. It should be noted that  the side constraints (3) 
constitute a particular case of the more general constraints 
(2). However, they are written separately in our optimiza- 
tion problem statement because the dual method approach 
described later can handle them more efficiently when con- 
sidered apart  from the behavior constraints. 

The nonlinear programming problem (1)-(3) can be 
solved iteratively by using numerical optimization tech- 
niques (Morris 1982). Each iteration begins with a com- 
plete analysis of the system behavior in order to evaluate 
the objective function and constraint values along with 
their sensitivities to changes in the design variables (i.e. 
first derivatives). Most often, the analysis capability is 
based on finite element discretization. A design iteration 
is concluded by employing the results of these behavioral 
and sensitivity analyses in a minimization algorithm which 
searches the n-dimensional design space for a new primal 
point that  decreases the objective function value while re- 
maining feasible (i.e. satisfying the constraints). 

The essential difficulty in solving the nonlinear pro- 
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gramming problem (1)-(3) lies in the implicit character of 
the constraint functions c j ( x ) .  In other words, for each 
new design, these functions can only be evaluated numer- 
ically through a finite element analysis. The iterative na- 
ture of the optimization process implies that many struc- 
tural reanalyses must usually be accomplished before find- 
ing an acceptable solution. Those repeated analyses can 
lead to prohibitive computational cost when dealing with 
large scale problems. 

One widely used approach to design optimization is 
to join together a general purpose optimizer and a finite 
element package having the required sensitivity analysis 
capabilities. Many numerical experiments conducted for 
that purpose have demonstrated that direct approaches 
like gradient projection or feasible direction methods are 
inadequate for design optimization problems in view of the 
large number of iterations required for convergence. On 
the other hand, recursive linear programming techniques, 
even though they necessitate difficult adjustments of move 
limits, have proved to be computationally efficient. Fol- 
lowing this idea of sequential linearization, various meth- 
ods have been proposed during the last decade, leading 
to the now well established "approximation concepts" ap- 
proach (Schmit and Miura 1976; Schmit and Fleury 1980; 
Fleury and Schmit 1980). 

In the approximation concepts approach, the primary 
optimization problem is replaced with a sequence of ex- 
plicit subproblems having a simple algebraic structure. 
Each subproblem is generated through Taylor series ex- 
pansion of the objective function and constraints in terms 
of intermediate linearization variables. For example, lin- 
earization of the constraints with respect to reciprocal 
variables is a well recognized technique to solve optimal 
sizing problems. There is an intuitive explanation for the 
success of this technique, in that stresses and displace- 
ments are exact linear functions of the reciprocal sizing 
variables in the case of a statically determinate structure. 
For shape optimal design problems, there is no such physi- 
cal guideline for the selection of intermediate linearization 
variables. Nevertheless, this change of variables contin- 
ues to have a highly beneficial effect on the convergence 
properties of the shape optimization process (Braibant and 
Fleury 1985; Fleury 1986). 

A very attractive feature of the approximation con- 
cepts approach is that it replaces the primary optimization 
problem with a sequence of separable subproblems which 
can be efficiently solved by a dual method formulation. In 
the dual approach, the constrained primal minimization 
problem is replaced by maximizing a quasi-unconstrained 
dual function depending only on the Lagrangian multi- 
pliers associated with the linearized constraints. These 
multipliers are the dual variables subject to simple non- 
negativity constraints. The efficiency of the dual formu- 
lation is due to the fact that  maximization is performed 

in the dual space, whose dimensionality is relatively low 
and depends on the number of active constraints at design 
iteration. 

The convex linearization method (CONLIN) (Fleury 
and Braibant 1986) was initially conceived as an extension 
to the approximation concepts approach. The key idea in 
the CONLIN method is to perform the linearization pro- 
cess with respect to mixed variables, either direct or re- 
ciprocal, independently for each function involved in the 
optimization problem. At each successive iteration point, 
the CONLIN method only requires evaluation of the ob- 
jective and constraint functions and their first derivatives 
with respect to the design variables. The optimizer will 
then select by itself an appropriate approximation scheme 
on the basis of the signs of the derivatives. This constitutes 
a major improvement with respect to the regular approxi- 
mation concept approach, where it is usually assumed that 
the objective function is linear in the direct variables (e.g. 
structural weight) and that  the constraints can be accu- 
rately approximated as linear functions of the reciprocal 
variables (e.g. stresses and displacements). Furthermore, 
the CONLIN optimizer has an inherent tendency to gen- 
erate a sequence of steadily improving feasible designs, 
in contrast with the previously developed approximation 
concept approach using dual methods (Schmit and Fleury 
1980; Fleury and Schmit 1980). Finally, it is relatively 
straightforward to equip CONLIN with a built-in strat- 
egy for dealing with highly infeasible starting points, by 
uniformly relaxing the violated behavior constraints. 

The CONLIN method proceeds by linearizing each 
function defining the optimum design problem with re- 
spect to a properly selected mix of direct and reciprocal 
variables, so that  a convex and separable subproblem is 
generated. The selection of the "intermediate" lineariza- 
tion variables is made on the basis of the signs of the first 
partial derivatives. It is easily proven that,  considering 
any differentiable function c (x), the following linearization 
scheme yields a convex approximation (hence the term 
"convex linearization", Fleury and Braibant 1986): 

+ 

where c i denote the first derivatives of c ( x )  with respect 
to the design variables x i .  The symbol ~ ( ~ )  means 

+ - 
"summation over the terms for which c i is positive (nega- 
tive)". One of the most interesting features of the convex 
linearization scheme is that  it also leads to the most con- 
servative approximation amongst all the possible combina- 
tions of mixed direct/reciprocal variables. This property 
was initially demonstrated by Starnes and Haftka (1979), 
who employed conservative approximation to handle diffi- 
cult buckling constraints. 



The CONLIN algorithm applies this convex lineariza- 
tion scheme to the objective function and to all the con- 
straint functions defining the optimization problem (1)- 
(3). It is convenient to normalize the design variables so 
that they become equal to unity at the current point x 0 
where the problem is linearized in the form 

/ x i  i 0 0 
x i =  ~. ==#" c i =  c i x  i • 

The factor (x°) 2 disappears from (4), which then becomes: i 

, 
= ci(x i - 1 ) - E c i  ~ . - 1  . (4') 

_]_ - -  

Applying this linearization technique to each function 
cj (x), and dropping the superscript i, the following ex- 

plicit subproblem is generated: 

min E CiOX i -- E ci-~O --cO, 
xi + 

subject to E cij xi - E ci---~j ~ co (j = 1, , m) ,  
xi + 

~i <xi  -<~i, (5) 

where cij denote the first derivatives of the objective and 

constraint functions evaluated at the current point x °. 
Note that the constants ~" contain the zero order con- 
tributions in the Taylor series expansion in the form 

0 _ cj(xO) (j = 0 . . . .  m ) .  
= l I 

i 

(6) 

2 Dua l  m e t h o d  a p p r o a c h  

In the convex linearization method, the initial problem is 
transformed into a sequence of explicit subproblems hav- 
ing a simple algebraic structure. Furthermore each sub- 
problem is convex and separable. These properties make 
it attractive to solve the subproblem by using dual al- 
gorithms. The dual method approach is well-known and 
quite respected in the mathematical programming com- 
munity (Lasdon 1970, pp. 396-459; Lootsma 1989). In the 
context of structural optimization problems, it was ini- 
tially introduced by Fleury (1979), and it subsequently 
led to a reconciliation of optimality criteria techniques 
and mathematical programming methods (Fleury 1982). 
In this section, the principles of the dual formulation are 
applied to the explicit subproblem generated by the CON- 
LIN strategy. The solution of the primal problem (5) can 
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be obtained by the following "Max-Min" two-phase pro- 

cedure: 

max 1(r) ,  

subject to rj  > O, (7) 

where the dual function l(r) results from minimizing the 
Lagrangian function 

_ _  _ ~ j  , 

j=0 

(8)  

over the acceptable primal variables 

l ( r ) -  min L ( x , r ) .  (9) 

The separability of the primal problem implies that the 
Lagrangian function (8) can be written as the sum of n in- 
dividual functions L i (xi) , and therefore, the n-dimensional 
minimum problem (9) can be split into n single variable 
minimization problems: 

bi 
min Li(xi)  = a i x i + - - ,  

xi 

subject to x-i <- xi <- x i ,  (10) 

where the coefficients 

ai = E cij rj >-0' 
+ 

and 

bi = - E cijrj  >- O, (11) 

depend only on the dual variables rj. These coefficients 
remain always non-negative in the feasible region of the 
dual space (i.e. rj  > 0). Therefore, the Lagrangian prob- 
lem (10) has necessarily a unique solution, obtained by 
stating that the first derivative of Li(xi)  must vanish 

L (M - a i  - = o .  

Since the side constraints (3) must be satisfied, it comes 

1 

( bi ~2  2 bi ~2 (12) x i =  if x~ < - - <  ~, 
\ ai ) ai 

x i = x  i if --bi < x  2. (13) 
ai 
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x i = - ~ i  if - 2 <  bi (14) x i - - .  
ai 

Remembering that  a i and b i depend on the dual vari- 
• ables [see (11)], we have obtained fully explicit primal-dual 

relationships. It can be seen that,  at each point in the 
dual space, the primal variables are subdivided into free 
and fixed variables. It is convenient to introduce the set 
of indices 

I =  {i :_z i < x i < ei}.  (15) 

The free variables (i e I) are given by (12), while the 
remaining fixed variables are given by (13) or (14). 

From the foregoing developments, it appears that  the 
dual problem (7) can be expressed in closed form 

m[z l m a x  l(r)  : ~ r j  c# 'x i (r)  - ~ ci~ -cJ , 
j = o  . + _ x d r )  

(16) 

s.t. r j  > 0, 

where the primal variables x i are known explicitly in terms 
of the dual variables r 3 via (12)-(14). In order for the 
dual function to be bounded, the dual variables rj  must 
be linked by a linear equality constraint. Following the 
usual practice, we shall simply assume that the Lagrangian 
multiplier r0 associated with the objective function is fixed 
to a unit value. 

A fundamental property of the dual function is that  its 
first derivatives are simply given by the primal constraint 
values 

dl _ E ciJ x i ( r )  - E ci j  -cs" (17) 
g J -  d r j  + _ x i ( r )  

In addition, because the dual problem is fully explicit 
and because the corresponding primal problem exhibits a 
relatively simple algebraic form, the second derivatives of 
the dual function 

d2/ 
H j k  -- drjdrk 

can be written in closed form. From (17) it comes 

v "  dx i  ( c i ] ~  dxi  

+ 

Differentiating the primal-dual relationship (12), it follows 
that  

dx__ i = \ z dr k - bi dr k ] (i E I )  

drk  (2x ia  3) ' 

for the free primal variables. For the fixed variables, these 
derivatives are obviously zero. 

Using the definition (11) of a i and bi, it can be seen 
that  

da i dai 
- +Cik if Cik > O, -- 0 if c i k <  O, 

dr k drk 

db i dbi 
. . . .  Cik , if. Cik < O, = 0 if c i k >  O . 
dr k ~ dr k 

Therefore 

dxi  _ cik 
drk  2x ia  2 if Cik > 0, 

dxi  CikXi -- if cik < 0. (18) 
dr k 2a 2 

Finally, by regrouping the foregoing results, an explicit 
form is obtained for the elements of the dual Hessian ma- 

trix: 

1 X--, n x i 
HSk = --~ ~ i~ ' n jk~ ,  (19) 

iEI  

where 

n i j  -= ci3. if c i i >  O, 

cij  if c i j < O ,  
n i j  : x2 

and the nik  coefficients obey the same rule. It is important 
to emphasize that  the summation in (19) is restricted to 
the free primal variables, i.e. the variables x i which do not 
reach their lower or upper bound [see (12)]. This means 
that  the second derivatives of the dual function are dis- 
continuous whenever a free primal variable becomes fixed, 
or conversely. 

The fundamental difficulty in using Newton type meth- 
ods for solving the dual problem resides in these inher- 
ent discontinuities of the Hessian matrix. Fortunately, the 
topology of the dual space can be described in an exact 
mathematical way via the concept of second order discon- 
tinuity planes (see e.g. Fleury and Schmit 1980; Fleury 
1979; Fleury 1982). Based on this concept, a very reli- 
able sequential quadratic programming method has been 
devised to solve the dual problem. 
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3 Sequen t i a l  q u a d r a t i c  p r o g r a m m i n g  in dua l  space  

The initial implementation of the CONLIN optimizer was 
based on the algorithm DUAL-2 available in ACCESS-3 
(Fleury and Schmit 1980). This Newton type dual algo- 
r i thm had proven to be highly efficient from the computer 
time viewpoint, when compared to the conventional gen- 
eral purpose optimizers available in ACCESS-3 (NEW- 
SUMT, CONMIN). However, DUAL-2 suffers from some 
lack of reliability because it breaks down when linearly 
dependent constraints lead to a singular Hessian matrix. 
When employing a second order algorithm, the main diffi- 
culty was that the second derivatives of the dual function 
are discontinuous along some planes in the dual space. As 
shown above, this feature remains true when the CON- 
LIN approximation scheme is used. To cope with this dif- 
ficulty, a specially devised line search technique was used 
in DUAL-2. The new optimizer, which is still more effi- 
cient and much more reliable, abandons the artifice of a 
line search procedure. Rather a more elaborate strategy 
is employed, which permits controlling the second order 
discontinuities as well as the possible singularity of the 
Hessian matrix. The new method replaces the basic gen- 
eralized Newton iteration that  was used in DUAL-2, with 
the solution of an equivalent quadratic subproblem. 

The key idea of the DUAL-2 optimizer has been main- 
tained: the maximum of the dual function is sought in a 
sequence of dual subspaces that  only include the dual vari- 
ables associated with potentially active primal constraints. 
Such a subspace will be referred to by the set 

M = { j  : c i is potentially active}. 

Of course, the dual subspace M needs to be periodically 
updated according to some rules which will be discussed 
later. For the moment, let us assume that we are just in- 
terested in finding the maximum value of the dual function 
in a given supspace M. It should be clearly understood 
that  ultimately, when the maximum of the dual function 
will be found, the subspace M will only contain positive 
dual variables. During the iterative optimization process, 
the set M is mostly made up of positive dual variables, 
however, a few zero dual variables are allowed to enter the 
set M occasionally. 

In the  old version of the DUAL-2 optimizer, the dual 
function was maximized by using a generalized Newton 
method, according to the iterative process 

r +. = r j + a s ]  ( j E M ) ,  
3 

where 

s = ( 2 o )  

represents a Newton search direction, evaluated from the 
gradient vector g and the Hessian matrix H of the dual 
function [see (17) and (19)1. The step length a was cho- 
sen to increase l(r) along s without violating the non- 
negativity constraints on the dual variables belonging to 
the current subspace M. The line search technique needed 
to compute an adequate step length o~ was simple, but it 
was sometimes computationally expensive. In addition, 
the Hessian matrix H could happen to be singular, caus- 
ing a breakdown in the optimization process. 

In the new version of the second order dual optimizer, 
no line search is required, and the Hessian matrix H is 
allowed to be occasionally singular. Instead of using the 
Newton method, the dual problem is transformed into a 
sequence of quadratic subproblems. Indeed, it can be ob- 
served that  the search direction s given by (20) is also the 
solution of the optimization problem 

By selecting a unit step length a -- 1 ,  i t  c o m e s  s = 

r - r  °, hence the following quadratic problem in the current 
subspace M: 

m a x  q(r) -= l r T H r  - r T b ,  

subject to r j  > 0 (j  e M ) ,  (21) 

where 

b = H r  0 - g. 

In summary, the new optimizer replaces the primary 
dual problem with a sequence of approximate quadratic 

subproblems. Each quadratic subproblem can be readily 
solved by using, for example, a simple conjugate gradient 
method with non-negativity constraints on the dual vari- 
ables. Because each quadratic subproblem is restricted 
to the current dual subspace, its dimensionality is usually 
small, and the maximization process is quite fast. Clearly, 
in this approach the Hessian matrix no longer needs to be 
inverted (it can, in fact, be occasionally singular), and no 
line search process is necessary. The main change is there- 
fore to replace the basic generalized Newton iteration in 
DUAL-2 with the solution of the equivalent quadratic sub- 
problem. However, in order to prevent the instability of 
convergence that might occur because of the second order 
discontinuities, additional modifications were found to be 
necessary. 
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4 T r e a t m e n t  of  side cons t ra in t s  

• In order to control the discontinuities in the dual Hes- 
sian matrix (19), which are due to status change of primal 
variables from free to fixed, or conversely, each quadratic 
subproblem is restricted to a given primal subspace where 
the design variables are no longer subjected to the side 
constraints. Such a subspace will be referred to by the set 

N = { i  : x i is imposed to be free}. 

The remaining variables are frozen to their current value 
(lower or upper bound), i.e. they are momentarily removed 
from the primal problem statement. 

The variables in set N will be considered as free vari- 
ables, even if the inequalities (12) are not satisfied at the 
current dual point. This does not introduce any difficulty, 
because even in the absence of side constraints, the primal 
variables, when evaluated at a given feasible point in the 
dual space, always take on real non-negative values. On 
the other hand, for the variables which do not belong to 
the set N, no computation is performed. Rather, these 

variables remain fixed to their lower or upper bound, even 
though at the current dual point, the inequalities (13) and 
(14) are violated. 

Therefore, the primal-dual relationships (12)-(14) are 
replaced with 

= (if i e N ) ,  

x i  unchanged (if i ~ N) .  

In order to properly select and update the subspaces M 
(dual variables) and g (primal variables), it is necessary 
to devise a reliable active set strategy. The key problem 
is to correctly identify the sets of free and fixed primal 
variables corresponding to a given dual subspace M of 
non-zero dual variables. 

Let us assume that the maximum of the dual function 
has been obtained, together with the associated sets of 
free and fixed variables, at some stage of the dual max- 
imization process. At this stage, the maximization algo- 
rithm will introduce one or more non zero dual variables, 
corresponding to violated primal constraints. The dimen- 
sionality of the current dual subspace M will therefore be 
increased by a least one dual variable. In this expanded 
dual space, the maximum of the dual function does not 
necessarily correspond to the same set of free variables 
as before. In other words, a scheme must be devised to 
determine the updated set of free primal variables. 

At the current dual point, the free and fixed primal 
variables have been correctly identified according to (12)- 
(14). However, because the dimensionality of the dual 
space has been increased, the new Hessian matrix can be 

singular. To prevent this singularity from occuring, some 
of the fixed variables must be artificially freed. The initial 
set N will be made up of the true set I of free variables, 
augmented by these freed variables. To determine which 
new variables should be added in the set N, the derivatives 
of the primal variables with respect to the dual variables 
are examined. From (18), it can be seen that, if a dual 
variable r k has entered the set M, then a primal variable 
xi  is likely to increase if cik < 0, and to decrease if c i k >  0 

(note that r k is initially zero, and subsequently, it can only 
take on a positive value). Hence, for each r k added to M, 
only the x i ' s  satisfying 

x i = x_ i and elk  < 0 ,  

o r  

x i  = ~ i  and cik > 0 

should be added to N. 
Once the updated sets M and N have been prop- 

erly initialized, the sequential quadratic approach can be 
started. Only the variables in set N are used to build up 
the Hessian matrix of the dual function appearing in the 
quadratic subproblem (21). This means that (19) must be 
used with the set N replacing the set I. 

Whenever a maximum of the dual function has been 
obtained in a given primal subspace N, the corresponding 
design variables are adjusted with respect to their lower 
and upper bounds, by using the exact primal-dual rela- 
tionships (12)-(14). Briefly stated, the set N is reset to 
the set I of free primal variables at the current dual point. 
The iterative maximization process is then restarted with 
the updated set N of free primal variables. This scheme 
is repeated until no further change occurs in the definition 
of the set N. At this stage of the iterative process, the 
correct primal subspace I has been found, i.e. 

N = _ I .  

The correct sets of free and fixed primal variables have 
been obtained and, therefore, the maximum of the dual 
function has been achieved in the current dual subspace. 

At this point, the dual subspace of non-zero dual vari- 
ables M is modified, if required. First, the zero dual vari- 
ables (if any) are dropped from the current dual subspace 
M. Second, one or more dual variables are added to the 
current subspace M, by selecting the most violated primal 
constraints. This scheme is repeated until no modification 
occurs in the set M. At this moment, the following rela- 
tionships are satisfied: 

g j - - o  if r j > O ,  
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g y < 0  if r ] = O ,  

which means that the maximum of the dual function has 
been obtained. 

An important advantage of this new maximization 
method lies in the fact that most of the computational 
effort in the iterative process is performed with reduced 
sets of primal and dual variables. This innovative active 
set strategy yields a highly reliable dual optimizer, without 
any possible breakdown due to singularities in the Hessian 
matrix. Therefore, the new dual algorithm coupled to the 
CONLIN formulation, constitutes a robust and very effi- 
cient general purpose optimizer. 

5 C o n s t r a i n t  r e l axa t i on  

Because of the conservative character of the convex lin- 
earization approach, it can happen that the approximate 
feasible domain be empty, especially when the initial start- 
ing point is seriously infeasible. To cope with this diffi- 
culty, a built-in constraint relaxation capability was intro- 
duced into the CONLIN optimizer. 

Introducing an additional variable 6, the following re- 
laxed problem is substituted to the explicit subproblem 
(5): 

min ~ ciOx i -- ~ ci--qO --k zOw~ , 
+ - xi 

subject to Z ci] xi - Z ci--~j <- -5y + zj(1 - ~) ,  
+ - xi 

x-i <- xi -< 5i 1 < ~, (22) 

where w is a user-supplied weighting factor, and 

zj = I c jl=  (j = o , . . . , m )  
i 

represent increments to the functions cj (x) ,  opening up 
the feasible domain in the design space if necessary. 

Clearly, if the "relaxation" variable 5 hits its lower 
bound (6 = 1), nothing is changed in the problem state- 
ment, which will usually happen when the starting point 
is feasible or nearly feasible. On the other hand, if the 
starting point is seriously infeasible, the algorithm will 
find a value of 6 greater than unity, which means that the 
approximate feasible domain is artificially enlarged. 

From the modified primal problem (22), it is easily 
seen that the Lagrangian problem related to the relaxation 
variable 6 has the form 

min z o w 6 -  (1 - 1/6) Z r J z ] "  
~>1 

From this minimum condition, 6 is given in terms of the 
dual variables by the relations 

6 = ( Z r j z j / w z o )  1/2 if ~ r j z j  > wzo,  

e : 1 if  r/j < w o. (23) 

The second order dual optimizer needs only little mod- 
ification to take care of the additional relaxation variable. 
Whenever a new dual point has been obtained in the iter- 
ative process, the relaxation variable 6 is computed from 
(23). As long as 6 remains fixed to 1, nothing is changed 
in the optimization process. If the relaxation has to be 
activated (i.e. 6 > 1), then it is necessary to modify the 
definitions of the dual gradient vector (17) and Hessian 
matrix (19) 

gJ = ~ c i j x i ( r )  -- ~ c i j / x i ( r )  -- c3" -- z j ( 1  -- 1 / 5 ) ,  (24) 
+ 

Hjk  = - 1 / 2  Z niJ n ikx i /a i  - 1  zizk/ws  . (25) 
iEI 

The dual quadratic subproblem (21) keeps the same form 
and same dimensionality as before. 

6 O p t i m i z a t i o n  a l g o r i t h m  

(i) initialization Equation 
define N = {i: x i is imposed to be free} 
M = {j: cj is potentially active} 

(ii) compute the free primal variables in subspace N 

xi(r); i e N (12) 
compute the relaxation variable 6 (23) 

(iii) evaluate the dual gradient vector in subspace M 
g3"(x);J E M (24) 

(iv) check optimality in subspace N 

if gi = 0 for r j  > 0 

a n d g ] < 0 f o r r y = 0  

then go to (vii) 

(v) evaluate the dual Hessian matrix in subspace M 
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Hfk(X) ;  j , k  E M (25) 

compute b = H r  - g 

(vi) solve the quadratic subproblem and return to (ii)(21) 

(vii) update of  set N 

for i E N if x i < x__ i or x i > -~i then remove i from N 

for i • g evaluate x i = (bi /ai)  1/2 

if x i > x_ i and x i < ~i then add i to N 

if set N has been modified, go back to (ii) 

(viii) update o/  set M 

for j C M if U = 0 then remove j from M 

for j ~ M evaluate the primal constraint values gj 
(17) 

if gj _ 0 for all j C M, go to (ix) 

otherwise add one or more active constraints to the 
set M and go back to (ii) 

(ix) the maximum of the dual function has been obtained 

r*" j E M (other r j  are zero) 

x*; i e N (other x i are fixed) 

Note.  The initialization phase (i) is normally based on the 
input data provided by the user (x i and rj), for example, 
by employing the results from a previous call to the CON- 
LIN optimizer. However, a built-in starting procedure is 
also implemented, by assuming that the initial subspace 
M contains only one active constraint (the most critical 
one at the given design point). 

7 Conc lud ing  r e m a r k s  

The convex linearization method has proven to be a highly 
efficient and reliable optimization tool. The specially de- 
vised second order dual optimizer described in this paper 
offers many attractive features that make it ideal for most 
of ollr research projects. CONLIN is especially adapted 
to structural synthesis problems and it is envisioned that 
it will soon have the ability to solve fairly large scale 
optimization problems (hundreds of design variables and 
constraints), at the expense of a moderate computational 

time. It has a built-in constraint relaxation capability that 
allows the user to start from any infeasible initial design, 
and even to find a solution to infeasible problems (in the 
form of minimal relaxation). 

At each successive iteration point, the CONLIN pro- 
cedure only requires evaluation of the objective and con- 
straint functions and their first derivatives with respect to 
the design variables. This information is provided by the 
finite element analysis and sensitivity analysis results. The 
CONLIN optimizer then selects by itself an appropriate 
approximation scheme on the basis of the sign of the deri- 
vatives. 

Because this paper is mostly focused on the dual algo- 
rithm imple~m~nte d in the CONLIN optimizer, rather than 
the convex ai~proximation strategy itself, no examples of 
application were presented. Indeed, there exists no ba- 
sis for fair comparison with other numerical optimization 
methods (feasible directions, projected or reduced gradi- 
ent, SLP, SQP, etc.). Rather, we shall close this paper by 
providing a summary of the many various problems solved 
by CONLIN up to now. 

The CONLIN optimizer can, of course, solve all the 
optimal sizing problems previously treated by DUAL-2 
(Fleury and Schmit 1980). It was successfully used by in- 
dustry to solve real life, large scale problems (Fleury and 
Braibant 1986). CONLIN has also demonstrated its abil- 
ity to solve efficiently shape optimal design problems in- 
volving two-dimensional structures in plane stress or plane 
strain. In all the numerical examples reported by Braibant 
and Fleury (1985); Fleury (1986) and Liefooghe, Shyy 
and Fleury (1989), convergence has been achieved within 
ten finite element analyses. More recently, CONLIN has 
been successfully applied to configuration optimization of 
trusses, exhibiting similar convergence properties (Kuritz 
and Fleury 1989). A sampling of typical structural op- 
timization problems can be found in a paper by Fleury 
(1987). Other applications include: optimization of path 
robot planning (Braibant and Geradin 1985); optimization 
of composite structures using NASTRAN (Nagrendra and 
Fleury 1989); bound and minimax formulation problems 
(Olhoff 1988). Every optimization problem mentioned in 
this paragraph was solved by using the dual algorithm 
presented in this paper. 

In addition, the convex linearization method was the 
subject of a fundamental mathematical study, in which 
many numerical experiments were carried out on analyti- 
cal problems (Nguyen eta/.  1987). The method was found 
to perform well for a broader class of problems than the 
one for which convergence can be proven. It was sug- 
gested that this feature is due to the conservative nature 
of the convex linearization scheme. Finally, the CON- 
LIN strategy was the basis for further mathematical de- 
velopments, leading to the promising "Method for Moving 
Asymptotes" (Svanberg 1987). 
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